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1 Introduction

This document is an evaluation of the factoring problem, as a basis for designing
cryptographic schemes. It relies on the analysis of numerous research papers on the
subject.

The present report is organized as follows: firstly, we review the factoring problem
and several related problems such as the problem of extracting e-th roots, which forms
the basis of the RSA cryptosystem. Next, we analyze the various algorithms that are
currently known to solve the problem. For each algorithm, we study its asymptotic
behaviour, as well as its practical running time, based on experiments reported in the
literature. Finally, we derive consequences in terms of key sizes for cryptosystems
whose security depend on the hardness of factoring. We conclude by making some
predictions on how the key sizes might evolve. This is as requested by IPA.

2 Factoring and related problems

In this section, we review the problem of factoring integers and several related problems,
and we investigate their security in terms of complexity-theoretic reductions. Besides
the problem of extracting e-th roots, which forms the basis of the RSA cryptosystem,
we cover the strong RSA problem and the approximate e-th root problem AERP, which
have been recently considered in relation with various cryptographic schemes.

2.1 Factoring as a cryptographic primitive

It is well known that any integer n can be obtained, in a unique manner, as the product
of non necessarily distinct prime numbers. Factoring n consists in finding the list of
such primes, also called the prime decomposition of n. Of particular interest, is the
case of integers n, which are the product of two prime factors p and q.

The basic security assumption on which numerous cryptosystems rely is the hard-
ness of factoring: an attacker cannot find the prime decomposition of n. In a more pre-
cise complexity-theoretic framework, this means that the success probability Succfact(A)
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of any polynomial time algorithm A attempting to factor n is negligible, i.e. asymp-
totically smaller than the inverse of any polynomial function of the security parameter.
Probabilities are taken over n and the random coins of A. The security parameter k is
directly related to the bit-size of n. For example, one can simply set k = |n|. In most
cryptographic applications, especially in the case of integers of the form n = pq, n is
not chosen at random, but is, implicitly or explicitly, produced by a key generation
algorithm K(1k). In the case of the RSA cryptosystem, the key generation algorithm,
chooses, on input k, two large primes p, q of equal size and issues the so-called modulus
n = pq. The sizes of p, q are set in such a way that the binary length |n| of n equals
2k. Further tests, related to the factors of p − 1 and q − 1 are usually included that
avoid weak moduli. This restricts the family of integers that A attempts to factor to
those output by the key generation algorithm K(1k). In this case probabilities also
range over the random coins that K uses.

To go from asymptotic to exact estimates, we can define Succfact(τ, k) as the proba-
bility for an adversary to factor a given integer within time τ . We turn the above into
symbols, in the case of integers n of the form p, q, p < q:

Succfact(A) = Pr[n← K(1k), n = pq : A(n) = p].

The hardness of the factoring is the statement that, for large enough k, this probability
is extremely small.

Many cryptographic schemes rely on the assumption that factoring is hard, and, at
this point, we will simply mention the celebrated RSA algorithm proposed by Rivest,
Shamir and Adleman [51].

2.2 RSA and related schemes

The modern approach to cryptographic design relies on the notion of security proof.
Such proofs are reductions in the sense of complexity theory. Given an attacker A
that breaks the cryptographic scheme, one designs another machine B, solving the
underlying hard problem. The relation between running times and success probabilities
of A and B is further made explicit, so that, if the security loss is not too large, concrete
estimates on key sizes may be derived from the proof.

Ideally, one would like to establish the security of a scheme based on the sole
assumption that the underlying problem is hard. Unfortunately, very few schemes
allow such a proof. For the others, the best one can hope for is a proof carried in a
non-standard computational model, as proposed by Bellare and Rogaway [4], following
an earlier suggestion by Fiat and Shamir [27]. In this model, called the random oracle
model, concrete objects such that hash functions are treated as random objects. This
allows to carry through the usual reduction arguments to the context of relativized
computations, where the hash function is treated as an oracle returning a random
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answer for each new query. A reduction still uses an adversary as a subroutine of a
program that contradicts a mathematical assumption, such as the hardness of factoring
However, probabilities are taken not only over coin tosses but also over the random
oracle.

In the case of factoring, whatever the computational model is, it is often the case
that security is not related to the problem itself, but rather to the question of extracting
e-th root modulo n. The case e = 2 is the problem of extracting modular square
roots, which is easily shown equivalent to factoring. The general case is related to
the RSA cryptosystem. At key generation, an exponent e, relatively prime to ϕ(n) =
(p− 1)(q − 1) is chosen, and the corresponding RSA function is defined by

x :−→ (xe) mod n

The main conjecture related to this function is its one-wayness (OW): using only public
data, an attacker cannot invert the function. More precisely, denote by Succrsa(τ, k)
the probability for an adversary to find the preimage of a given element within time τ ,
in symbols:

Succrsa(τ, k) = Pr[(n, e)← K(1k), y ← ZN , x← A(n, e, y) : y = xe mod n],

then, for large enough moduli, this probability is extremely small. The asymptotic
version states that, when A has running time bounded by a polynomial function τ of
the security parameter, Succrsa(τ, k) eventually becomes smaller than the inverse of any
polynomial in k.

It is well known that, if d is the inverse of e modulo ϕ(n), yd mod n computes the
inverse of the RSA function. Thus, the factorization of n allows to invert the RSA
function, since d can be computed from p and q. It is unknown whether the converse is
true, i.e. whether factoring and inverting RSA are computationally equivalent. There
are indications that it might not be true (see [8]). Thus, the assumption that RSA is
one-way might be a stronger assumption than the hardness of factoring. Still, it is a
widely believed assumption, and the only method to assess the strength of RSA is to
check whether the size of the modulus n outreaches the current performances of the
various factoring algorithms.

The strong RSA problem, attempts to find x and e > 1, such that xe = y mod n,
given an element y in Z?

n. The assumption that the problem is hard is stronger than the
RSA assumption, that was just considered above. This hypothesis has been recently
used as a basis for the security of several cryptographic schemes. Of particular interest
is the Cramer-Shoup signature scheme [11], where the security proof is carried in the
standard model of computation, without any random oracle.

Another problem that has been considered in [45] is the approximate e-th root
problem (AERP: given n and y in Z?

n, find x such that xe mod n lies in a prescribed
interval centered at y. Of particular interest is the case when the length of the interval
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is of the order of n2/3, which forms the basis of the ESIGN [25, 45] signature scheme.
In this case, the key generation algorithms produces moduli of but-size 3k, where k
is the security parameter and the exact format of the problem is to find x such that
y ≤ xe mod n < y + 22k−1. Again, computing the inverse of the RSA function clearly
allows to solve the AERP problem. It is unknown whether the converse is true, i.e.
whether AERP and inverting RSA are computationally equivalent. This is conjectured
in [26], as soon as e ≥ 4.

It should be mentioned that the ESIGN signature scheme uses moduli of the form
p2q, where p and q are primes of size k = |n|

3
. This is related to an algebraic property

of exponentiation modulo such integers, which offers an extremely efficient way to find
an element of Z?

n whose e-th power lies in a prescribed interval of length at least pq.
Moduli with three or more distinct factors are also being considered in the setting of
multiprime RSA (see [54]).

In conclusion, the only method known to attack the RSA problem, as well as its
variants, including AERP, is is to factor the modulus. Therefore, in order to estimate
whether the parameters of a cryptographic scheme, relying on the hardness of these
problems, offer a wide security margin, one needs to refer to the performances of the
various algorithms known for factoring.

3 Algorithms for factoring

As was just observed, the security of many cryptographic schemes can only be measured
in terms of the hardness of factoring integers. We now review the known factoring
algorithms. Before discussing the two main general purpose factoring algorithms, the
quadratic sive (QS) and the number field sive (NFS), we decribe two specific families of
algorithms, respectively covering the case where the number n to factor has relatively
small factor, and the case where there are repeated factors.

3.1 Factoring techniques sensitive to the size of the smaller
factor

3.1.1 Pollard’s ρ-method.

Assume that the modulus to factor is denoted by n and its smallest factor by p. The
idea behind the method is to iterate a polynomial P with integer coefficients, that is to
say computing x1 = P (x0) mod n, x2 = P (P (x0)) mod n, etc. We try to find a collision
modulo p, i.e. two values x and x′ such that x = x′ mod p. Since it is extremely unlikely
that the same equality holds modulo n, we then factor n by computing the g.c.d. of
x− x′ and n. P is usually taken to be x2 − 1.

Collison search is an extremely well understood problem whose time complexity is
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O(
√

p) and which can be programmed efficiently. The problem here is that the collison
test is a gcd computation, which slows down the whole algorithm. Although there are
several optimizations, the ρ-method can only be used to cast out small factors of an
integer (say 30-digit factors). As far as we know, it has not been used to find signifi-
cantly larger factors. Although large scale collision search seems possible, following the
ideas in [57], experiments along these lines have not been reported in the literature.

3.1.2 The p− 1 method.

Let B be a positive integer. A number is B-smooth if it is of a product of prime
numbers all < B. B-smooth numbers are usually used through a table of primes < B.
The p− 1 method relies on the use of Fermat’s little theorem: if p− 1 happens to be
B-smooth, then the gcd of n and a`(B) − 1 factors n, where `(B) is the product of all
prime factors < B.

Of course, the p−1 method only works if p−1 is smooth. Therefore, it is quite irrel-
evant to cryptography, since key generation algorithms usually eliminate such primes.
We have included the method in the present report as a step towards more efficient
techniques.

3.1.3 The elliptic curve method.

The ECM is a generalization of the p− 1 method, for which the above simple counter-
measure is not sufficient. Consider an elliptic curve modn with equation

y2 = x3 + ax + 1

If the number of points of this curve modulo p is B-smooth, then a factor of n can be
discovered along the computation of the scalar multiplication of M0 = (0, 1) by `(B),
according to the group law of the elliptic curve.

As for many factoring algorithms the success probability of the algorithm, and the
resulting complexity estimates, are naturally expressed in terms of the L-function:

Lq[s; c] = exp(c(ln q)s(ln ln q)1−s).

The reason why this function is involved is its relation with the asymptotic probability
that a random element can be factored into elements of a factor base (see [29, 46]).
For instance, it is known that the probability that a random integer < Lx[ν; λ] has all
its prime factors < Lx[w; µ] is asymptotically

Lx[ν − w;−λ(ν − w)/µ + o(1)].

Using such estimates, it can be shown that the elliptic curve is Lp[1/2; α]-smooth
with probability Lp[1/2;−1/(2α) + o(1)]. This is minimal for α = 1/

√
2 and gives an

expected running time of Lp[1/2;
√

2 + o(1)] group operations on the curve.
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There have been several improvements of ECM factoring, notably the FFT exten-
sion of P. Montgomery. Furthermore, several implementations of ECM are available.
The current ECM factoring record was established in december 1999, when a prime
factor with 54 digits of a 127-digit composite number n was found with GMP-ECM,
a free implementation of the Elliptic Curve Method (see [39]). The limit used was
B = 15, 000, 000.

In a recent paper [9], Richard Brent extrapolates the ECM record to be of D digits
at year about

Y = 9.3 ∗
√

D + 1932.3

this would give records of D = 60 digits at year Y = 2004 and D = 70 at year 2010.
Such record would need B ' 2, 900, 000, 000 and require testing something like 340, 000
curves. It can be noted that, if Brent’s prediction is correct, moduli with factors of 256
bits will become insecure at year Y = 2014. It should be noted that the ECM method
decribed in this section is superseded by the algorithms that appear further on in the
present report. However, since its computing time is related to the size of the smallest
factor p of n, ECM gives an indication on the minimum size of p. Accordingly, it limits
the number of distinct prime factors of equal size that can be allowed for multiprime
schemes, when the size of the modulus is given.

3.2 Specific factoring techniques for numbers of the form prq

In recent work (see [7]), a new factoring method that applies to integers of the form
prq has been found. The method is based on an earlier result of Coppersmith (see[18]),
showing that an RSA modulus n = pq, with p, q of the same size, can be factored
given half the most significant bits of p. It turns out that, for numbers of the form
n = prq, with p, q of the same size, fewer bits are needed. In the sequel we let c be a
real constant such that q ' pc. In many cases of interest for cryptography, c is set to
1.

Note that disclosing the leading bits of p provides a rough approximation P of
p. What remains to be found is the difference x0 = p − P . Note that x0 is a root
of f(x) = (x + P )r, modulo pr. The new method is based on finding polynomials
with short enough integer coefficients, which vanish at x0 modulo some power prm of
p. It relies on techniques that find small solutions to modular polynomial equations,
investigated by Coppersmith [17, 19], Howgrave-Graham [30] and Jutla [32]. The key
result is the following simple lemma:

Lemma 3.1 Let h(x) be a polynomial of degree d with integer coefficients and let X
be a positive integer. Assume ||h(xX)|| < M/

√
d. If h(x0) = 0 (mod M) and |x0| < X,

then h(x0) = 0 holds over the integers.
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Proof. From the Cauchy inequality, we get that |h(x0)| is bounded by M√
d

√
d = M .

Hence the result.
The lemma suggests to look for polynomials h(x), such that h(x) has x0 as a root

modulo M = prm, where m is an appropriate integer, and h(xX) has norm less than
roughly prm. We let

gi,k(x) = nm−kxif(x)j.

Observe that x0 is a root of gi,k(x) modulo M , for all i and all k = 0, . . . ,m. Thus,
in order to apply the lemma, it is enough to find a polynomial of small enough norm
in the lattice L generated by various gi,k(xX) of bounded degree. This is a standard
lattice reduction problem.

We use d such polynomials, where d > mr, will be determined later.

1. all gi,k(x), with i = 0, . . . , r − 1 and k = 0, . . . ,m− 1,

2. all gj,m(x), with j = 0, . . . , d−mr − 1.

The determinant of the lattice L is easily seen to be the product of the leading coeffi-
cients

∆ = Xd2/2nrm(m+1)/2

Based on LLL heuristics [31], short vectors of this lattice should therefore be around

Xd/2n
rm(m+1)

2d . When using the LLL algorithm, there is a further multiplicative factor
2d/2 (see [34]), but we do not take this into account. Thus the method is heuristically
valid when

Xd/2n
rm(m+1)

2d < prm/
√

d

Again, we forget the
√

d term, as we did for the 2d/2 multiplicative factor and obtain:

Xd/2 < p−
rm(m+1)(r+c)

2d prm

The optimal value of m is attained at b d
r+c
− 1

2
c and we may choose d so that d

r+c
is

within 1
2(r+c)

of an integer. Working through arithmetics yields the bound

X < p1− c
r+1

− r
d
(1+δ)

with

δ =
1

r + c
− r + c

4d

Since δ is < 1, we obtain the simpler bound

X < p1− c
r+1

−2 r
d
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To conclude, lattice reduction will find a polynomial that vanishes at x0 over the
integers if the bound X for the difference p− P is bounded by

p1− c
r+1

−2 r
d

At this point, any standard root-finding algorithm will disclose x0, and therefore p.
Note that, when p, q are of almost equal size, c = 1, we can take d of the order of

r2 and ignore the term 2 r
d
. This means that factoring is performed by lattice reduction

as soon as an approximation P of p is known, such that

|P − p| < p1− 1
r+1

In other words, it is enough to guess a fraction 1
r+1

of the leading bits of p, to be able
to factor n.

Comparing the above estimate with the running time for ECM, one can see that the
new method beats ECM for r larger than, approximately

√
ln p. Several experiments

are reported in [7]. For example, the authors were able to factor a 768 bit modulus,
with p, q of equal bit-size 96 and r = 7, given the 22 leading bits of p. The running
time for LLL was 10 hours. No experiments appears possible when r = 1, 2 or 3,
which are the cases of interest for cryptography. Thus, for very small values of r, the
algorithm is certainly impractical.

We close this section by mentioning that it is also possible to slightly speed up ECM
for numbers of the form p2q (see [47], even though this does not apply to n = pdq, with
odd d. Despite, its academic value, the improvement does not change the order of
magnitude of the running time for ECM.

3.3 The Quadratic Sieve.

The quadratic sieve method (QS) factors n by gathering many congruences of the form

x2 = (−1)e0pe1
1 · · · pem

m

where p1, · · · , pm is a list of prime numbers < B, called the factor base. This is done by
finding B-smooth numbers of the form Q(a) = (

√
n+a)2−n. It turns out that there is

a very efficient sieving process that performs the job without division, hence the name
QS. Once enough congruences have been gathered, one obtains another congruence of
the same type with all exponents ei even: this is done by Gaussian elimination mod2.
Thus one gets a relation x2 = y2 mod n and, with significant probability, computing
gcd(x−y, n) factors n. The time complexity of QS is L[1/2; 1+o(1)] but, as it uses very
simple operations, it is usually more efficient than ECM for numbers whose smallest
prime factor exceeds n1/3.
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Many improvements of the basic method have been found, notably the multiple
polynomial variation (MPQS) and the large prime variation. This has led to very effi-
cient implementation and, until the mid-nineties, was used to set up factoring records.
The largest number factored by MPQS is the 129-digit number from the “RSA Chal-
lenge” (see [53]). It was factored in april 1994 and took approximately 5000 mips-years
(see [3]).

3.4 The Number Field Sieve.

The number field sieve (NFS) is somehow similar to the QS but it searches for congru-
ences in some number field (algebraic extension of the rational numbers). The method
was first introduced in 1988 by John Pollard [49] to factor numbers of the form x3 + k.
It was quickly extended to handle numbers of the form re+s for small positive r and |s|:
this was successfully applied to the Fermat number F9 = 2512+1 (see [37]). This version
of the algorithm is now called the special number field sieve (SNFS) [36], in contrast
with the general number field sieve (GNFS) [10], which can handle arbitrary integers.
GNFS factors integers n in heuristic time Ln[1/3; c + o(1)], with c = (64/9)1/3 ≈ 1.9.
This is asymptotically considerably better than QS.

3.4.1 Overview

The number field sieve (NFS) first selects two low-degree irreducible polynomials f1(X)
and f2(X) in Z[X] with small coefficients, such that f1(X) and f2(X) have a common
root m modulo n. These polynomials define two number fields Q(α1) and Q(α2).
Because m is a root, there is a natural ring homomorphism ϕj from Z[αj] to Zn

(j ∈ {1, 2}), induced by ϕj(αj) = m. We extend ϕj to the field Q(αj), ignoring
potential divisibility problems, which only appear if n gets factored.

The ring of integers of a number field is not necessarily a unique factorization
domain, but the ring of fractional ideals always is. Thus, the NFS selects two ideal
factor bases B1 and B2 (corresponding to Q(α1) and Q(α2)) consisting of prime ideals
of norm only divisible by small primes. We define smoothness as follows: a fractional
ideal I of Q(αj) is smooth if it can be factored completely over the factor base Bj, and
an algebraic number x is smooth if the fractional ideal 〈x〉 it spans is smooth.

By sieving, the NFS finds a huge collection of pairs (ai, bi) of small integers such
that each ai − biαj is smooth: as a result, the factorization of 〈ai − biαj〉 is known.
Linear algebra modulo 2 produces many sets S of indices such that, for each j = 1, 2,
the fractional ideal

∏
i∈S〈ai − biαj〉 is a square. This does not necessarily mean that

the algebraic number
∏

i∈S(ai − biαj) is a square in Q(αj). However, using specific
characters defined from Q(αj) to Z2, Adleman [1] was able to add a few linear equations
to ensure that

∏
i(ai− biαj) is in fact a square in Q(αj). If both algebraic numbers are
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squares, the following congruence

ϕ1

(∏
i∈S

(ai − biα1)

)
≡ ϕ2

(∏
i∈S

(ai − biα2)

)
(mod n),

can be rewritten as a congruence of squares:

ϕ1

√∏
i∈S

(ai − biα1)

2

≡ ϕ2

√∏
i∈S

(ai − biα2)

2

(mod n).

If it is possible to extract square roots of gigantic algebraic numbers, this yields a non-
trivial factor of n with significant probability. We now comment on the various steps
of the algorithm.

3.4.2 Polynomial selection

This is where the GNFS differs from the SNFS: in the SNFS, the polynomials are
derived from the special form of the number n to factor. Few polynomial selection
methods for the GNFS have been proposed. Most of them are based on the principle
described in [10]: first select m around n1/(d+1), where d is a small integer chosen
according to the size of n, and expand n in base m. This produces a first polynomial
f1 of degree d, while the second polynomial is set to f2(x) = x − m. Several such
pairs are chosen and a bit of sieving is performed to see which pair gives the best
results. Recently, Montgomery and Murphy (see [43, 13, 14]) refined this construction:
they suggested additional tests for selecting the polynomials based on the number of
roots modulo small primes. Polynomial which have many roots modulo small primes,
behave much better. Trial and error is still used, once several pairs have been selected.
In [14], the authors estimated that the new polynomial selection was four times better
than what was expected from the former method. In [22, 23], Montgomery proposed
another construction outputting a pair of quadratic polynomials rather than a high-
degree polynomial and a linear one. However this construction does not appear optimal.

3.4.3 Sieving

In this stage, one tries to find many pairs of small integers ai and bi such that each
ai−biαj is smooth. There are basically two techniques: lattice sieving and line sieving.
Assume that the second polynomial f2 is linear, as is the case in practice. In lattice
sieving [50], one fixes a prime q and finds pairs (ai, bi) such that (ai−biα1)/q and ai−biα2

are smooth. This is repeated for many special q’s. In line sieving (see [22, 23]), one
fixes a value of bi, and finds values of ai in a given interval, for which both ai − biα1

and ai − biα2 are smooth. Recents experiments [13, 14] used both lattice sieving and

10



line sieving, although this is somehow redundant. This follows from the fact that the
code for lattice sieving does not currently allow large factor bases.

3.4.4 Linear algebra

The linear algebra has a first technical step, which we do not describe in detail, since
it depends on many details of the sieving procedure, which we omitted. It consists in
deleting equartions and minimizing their number, as well as the number of unknowns.
The filtering procedure used in recent experiments [13, 14] is due to Cavallar [12].

The time-consuming part of the linear algebra is devoted to solving a huge sparse
linear system modulo 2. Applying structured Gaussian elimination is not recommended
when the system is huge, due to memory constraints. Instead, one prefers to use either
the Lanczos (see [33]) or Wiedemann [58] algorithms, or one of their variants. These
are iterative algorithms: instead of modifying the input matrix, they repeatedly apply
the input matrix to a vector. Thus, they only store, besides the original matrix, a few
temporary vectors. The Lanczos methods uses a symmetric matrix, but it follows from
elementary algebra that this is no restriction. Although it was designed for real-valued
matrices, it applies to other fields, unless it encounters a vector orthogonal to itself. To
avoid self-orthogonal vectors, it is better to operate in an extension field rather than
GF (2) itself. Block variants [15, 16, 42] of both algorithms have been proposed to
take advantage of word operations. The method currently in use in NFS factorization
experiments is Montgomery’s block Lanczos algorithm [42]: it requires n/(N − 0.76)
iterations where N is word size in bits. Each iteration applies the original matrix, as
well as its transpose, to an n × N matrix and performs a few additional operations,
which we do not describe in detail. It should be pointed out that, at the moment,
none of the above algorithms can be massively distributed. This is a bottleneck for
future NFS factorizations, since the factor base will grow in size, thus leading to larger
matrices to be handled at the linear algebra stage.

3.4.5 Square root

Once the linear algebra stage has been performed, one needs to extract square roots
of huge algebraic numbers. Let γ be such an algebraic number in the number field
K = Q(α): γ is actually given as a large product of small algebraic numbers. The
first efficient method was found by Couveignes [20]: Couveignes noticed that, when
the degree d of the number field K is odd, there is a way to distinguish between
the two square roots of a given number. This allows to compute

√
γ using Chinese

remaindering. However, Couveignes’s algorithm does not scale up to currently used
sizes. A major improvement was later found by Montgomery (see [40, 41, 22, 23, 44])
and is the method used in recent NFS experiments. Computations show that the
running time is negligible compared to other stages of the NFS, such as sieving and
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linear algebra, even if no one currently knows how to prove the fact.
We sketch the basic principle of Montgomery’s algorithm and refer to [41, 22, 44]

for details. The trick is to look for
√

γ, as a large product of small algebraic numbers.
A priori, it is not clear that such a decomposition exists, and this is one of the reasons
why the complexity of Montgomery’s method is still unknown. The algorithm tries to
find a decomposition through an iterative process. Notice that the ideal factorization of
〈γ〉 is completely known. Since γ is a square, we can thus obtain the ideal factorization
of
√
〈γ〉. At each step, the algorithm selects a reasonably small integral ideal in

either the numerator or denominator of
√
〈γ〉, and uses lattice reduction to find an

appropriate algebraic integer within this ideal. Even though the small ideal is not in
general principal, it turns out that, in practice, it is possible to find an algebraic integer
which is almost a generator, and which improves on the iterative approximation of

√
γ.

After sufficiently many steps, one obtains a reasonably good approximation of
√

γ, as
a product of appropriate small algebraic integers obtained by lattice reduction. The
exact value of the error in the approximation can be found by Chinese remaindering.
Finally, a square root

√
γ has been be computed.

3.5 Practical experiments

In practical terms, NFS beats QS for numbers of more than about 110 digits (see [22]).
The number field sieve was used to factor the 130-digit RSA challenge number in
april 1996, with an amount of computer time which was only a fraction of what was
spent on the old 129-digit QS-record. It was later used to factor RSA-140 in february
1999 with an amount of computer time about 2000 Mips-years. In august 1999, the
factorization of RSA-155 from the RSA list was obtained ([14]). The complete project
took seven calendar months. The polynomial selection took about one month on several
fast workstations. The sieving, was done on about 300 fast PCs and workstations
during 3.7 months. Filtering the relations and reducing the matrix corresponding
to these relations took one calendar month on an SGI Origin 2000 computer. The
block Lanczos step to find dependencies in this matrix took 224 CPU hours and 2
Gbytes of central memory on a Cray C916 supercomputer. The final square root step
was performed in about two days on an SGI Origin 2000 computer. The amount of
computer time spent on this new factoring world record is equivalent to 8000 mips-
years, whereas extrapolation based on RSA-140 and the asymptotic complexity formula
for NFS predicted approximately 14000 mips-years. As observed in section 3.4.2, the
gain was caused by the improved polynomial search method.
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bit-size complexity of NFS
of the modulus in log2

512 63
1024 85
4096 155
6144 182
8192 206

Figure 1: Complexity of factoring

4 Consequences in terms of key sizes

4.1 The current status of factoring

The current status of factoring is well understood. The current record is still at 512
bits. However, factoring technology has spread out: another number of the same bit-
size has been factored in October 2000, by a swedish team [2], in answer to a challenge
published in a book by Singh [55]. The experiment was carried through by a group
which did not consist of experts in the area, and, despite the fact that the running time
that they used was not optimal, they were successful. It is thus expected that larger
numbers will be soon factored, the main obstacle to a fully scalable implementation of
NFS being actually the linear algebra.

4.2 Selecting key sizes

In practical situations, the sizes of cryptographic keys based on the hardness of factoring
have to be chosen so that they outreach the expected performances of the factoring
algorithms, during the entire lifetime of the system. This involves making predictions.
The theoretical complexity of NFS Ln[1/3; c + o(1)], c ≈ 1.92, is a rough estimate,
which is not of much use, for many reasons:

• Due to memory constraints, the size of the factor base is always much less than
the optimal choice that theory would dictate.

• Methods used in the implementations differ from those used in the complexity
analysis: the polynomial selection appears better in practical terms, while the
linear algebra is difficult to handle.

Still, a table of time estimates for the best known factoring method NFS, as shown
on figure 1, can provide some indication. To derive an estimate of the key size corre-
sponding to a given workload 2`, one searches for a modulus for which the righthand
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side is `. As a typical case, one can select a modulus of 1024 bits to provide a security
level over 280.

In [14], the authors derive the following formula

Y = 13.24D1/3 + 1928.6

for predicting the calendar year for factoring D-digit number by NFS. The same formula
appears in [9] and produces Y = 2018 for D = 309, i.e. for a 1024 bit modulus. Such
estimates should lead to immediately ban 768 bit moduli and to adopt 2048 bit moduli
for long-term security.

For moduli which are not of the form n = pq, for example for multiprime RSA
moduli, or for ESIGN moduli of the form p2q, one should further take into account the
results in sections 3.1.3 and 3.2. Our findings is that lattice-based factoring cannot be a
threat, if the repeated factor appears with exponent 2 , 3 or 4. Similarly, ECM remains
inefficient for moduli with three prime factors. For moduli with 4 prime factors, it is
likely that they will be threatened by ECM before they are at hand for NFS, at least
for the minimal size 1024 bits. Accordingly, we do not recommend their use.
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