Evaluation Report on the
HIME(R) Cryptosystem

Jacques Stern

1 Introduction

This document is an evaluation of the HIME(R) Cryptosystem. Our work is based
on the analysis of documents [17, 18], and on various documents from the literature.
The present report is organized as follows: firstly, we briefly review the cryptosystem:;
next we discuss the security level of the cryptographic primitive which underlies the
scheme and analyze its relation to the difficulty of factoring; then, we evaluate the
security level of the scheme itself in the light of strong security notions such as se-
mantic security and security against adaptive chosen-ciphertext attacks; and finally,
we compare HIME(R) with other schemes based on factoring. This is as requested by
IPA.

2 Brief Description of the Scheme

2.1 Specification Review

HIME(R) is based on the hardness of factoring integers N of the form ptq, where p
and ¢ are prime numbers — of the same size — such that p = 3 mod 4, ¢ = 3 mod 4,
and d is a small integer > 1 (typically d = 2). Let k be the size in bits of integer N,
2F~1 <« N < 2%, The basic function f on which HIME(R) relies is defined by

f:{O,l}’“_1 — Zn
z — 22 modn

We still denote by f the extension of this function to Zy and state the following:

Theorem 1 Lety be a quadratic residue in Z%, where N = pq. There are ezactly four
integers Ty, Ta, X3, Ts, 0 < 1 < T3 < N/2 < 23 < x4 < N, such that f(z;) = y mod N.

Proof. The result is well known. However, we include the proof in order to provide the
actual computation of the four square roots, shown in [17, page 10].

1

Square roots modulo N are obtained by combining the two square roots modulo
g and the two square roots modulo p¢, by means of the chinese remainder theorem
(CRT). Now, it is easy to check that, when p = 3 mod 4, the square roots of y modulo
q are £y4t1)/4 mod ¢. Similarly, the square roots of y modulo p are +y®+1)/4 mod p.
Thus, it remains to see how one can lift the latter modulo p?.

Write any square root = of ¥ modulo p? in base p as:

T=x0+21p+...+x4-1p* L, with 0 < z; < p.

We show how to recursively compute z; from zq,---z;_1. Forany i, 1 <1 <d—1, we
let X; =21+ ...+ x;_1p"2, and compute modulo p*t:

y =1 = (20 + Xip + z:p')* = (20 + Xip)? + 2zoz;p’ mod p**'.
This uniquely defines z; as:

y — (zo + X;p)? mod p'*! y

(276) ™" mod p.
pZ

T; =

Conversely, it is easy to check that, using the above formula for z;, one can obtain a
square root modulo p¢ from each of the two square roots modulo p.

To conclude, it is enough to observe that the four square roots modulo p?g are
pairwise opposite. Thus two of them, say z; < o, are < N/2 and the other two,
x3 < x4, are > N/2. O

Before explaining how the HIME(R) cryptosystem uses the above function, we
introduce a more formal framework, that will be useful when we later perform the
security analysis.

2.1.1 Public-Key Encryption Schemes

A public-key encryption scheme on a message space M consists of three algorithms
(K, &,D):

e the key generation algorithm K(1%), which receives as its input a security param-
eter k£ and outputs, in a probabilistic manner, a pair of matching private-public
keys (sk, pk)

o the encryption algorithm Ey(m;r), which outputs a ciphertext ¢ corresponding
to the plaintext m € M, using random coins r € 2

e the decryption algorithm Dg(c), which outputs the plaintext m associated to the
ciphertext ¢, or a Reject answer if the ciphertext is invalid.

® @

Figure 1: OAEP padding

2.1.2 The HIME(R) Cryptosystem

The key generation algorithm X(1%) of the HIME(R) cryptosystem produces a
k-bit integer N as a product N = p?q, where d is a small integer strictly greater than
1, and p and ¢ are odd primes of same length, such that p = 3 mod 4, and ¢ = 3 mod 4.

It chooses parameters kg, k1 and n, such that n =k — kg — ki — 1, and 2kq < k. It
also chooses two hash functions G and H:

G :{0,1}* — {0,1}* ™~ and H : {0,1}FFo~1 — {0, 1}k,

The public key pk is the tuple (N, k, ko, k1, G, H). The private key sk is the factorization
(p, q) of N, which helps inverting function f, as shown by theorem 1. The message space
is M = {0,1}", and, finally, the space of random coins for the encryption algorithm is
Q = {0, 1}k,

The encryption algorithm &, (m;r) takes m € M and a random value r £ Q,
and computes a k — 1-bit integer z = s || ¢, by OAEP formatting (see [5] and Figure 1),
as follows:

s=(m]0")®G(r) and t = r @ H(s)

where @ denotes bitwise addition modulo 2, and || denotes concatenation of bit strings.
The output ciphertext is ¢ = f(z), with z = s ||t € {0, 1}

The decryption algorithm Dy (c) extracts the 4 square roots of ¢, denoted z;
(for i =1,...,4), and parses them as x; = s; || t;, with s; € {0,1}""* and ¢; € {0, 1}*o,
if z; € {0,1}*"1. Then, it computes:

ri =t ®H(s;) and M; = s; ® G(r;).

For each index 7, it checks whether M; is correctly formatted, with its k; trailing bits

3

zero. As soon as it finds such a properly formatted M;, it returns the n leading bits of
M;. If no properly formatted M; is found, the decryption algorithm returns Reject.

We refer to [17, pages 13—14] for a precise definition of G and H and for references
on the exact choice of the parameters.

3 Security Level of the Cryptographic Primitive

In this section, we investigate the security of the underlying cryptographic primitive,
both in terms of complexity-theoretic reductions and with respect to the recommended
parameters.

3.1 Complexity-Theoretic Arguments

We show that function f is one-way, based on the hardness of factoring integers N of
the form N = piq.

Theorem 2 Let N be an integer N = pq, where p and q are primes of the same size
k. Let f be the associated squaring function. If an adversary A is able to invert f with
probability e, within time bound t, then, there is a machine B that can factor N with
probability €' > ¢/3, within time bound t' < t 4 Tgq(k), where Tgeq(k) denotes the time
for computing a ged between k-bit integers:

Succ*(t) < 3 x Succ™®(k, t + Tyea(k))-

In the above, Succ?"(t) denotes the maximal success probability of inverting f, for any
adversary whose running time is bounded by ¢. Similarly, Succ™*(k,t) denotes the
maximal success probability of factoring a k-bit integer N = pq, for any adversary
whose running time is bounded by ¢.

Proof. Let us consider an adversary A able to break the one-wayness of f with proba-
bility e, within time bound ¢, in symbols:

Succ‘}W(A) « Pr[x ¥l {0, 1}y« f(z), 2 A(y) : 2 € {0, 1} A f(2) =y] > ¢

where probabilities include the internal random tape of the probabilistic machine A.
We use the above adversary A to factor IV, by describing a machine B that makes
calls to A:

1. B chooses z & {0, 1}+1;
2. B computes y + f(z);

3. Bruns A on y, and gets z;

4. B returns ged(N,z + z).

We expect that the output value is either p? or ¢. More accurately, we need to obtain
a lower bound for the probability v that B returns a non trivial factor of V:

v="Prlz & {0,1}* 1y« f(z), 2+ A®W) : f(2) =y A z # +z mod N].

Recall from theorem 1 that any quadratic residue y has four square roots, x1, x9, 3,
T4, such that
0<z1 <mo <N/2<zx3<14<N,

and z; = N — 24, 22 = N — x3. Note that z1, zo are < 2¢~1. Thus, there are j = 2,
3 or 4 square roots < 2¢~! which means that the input z to B takes j = 2, 3 or 4
possible values. On the other hand, B is successful is x # 4z, where z is the output.
Inspecting all cases, we see that this means one value for x when j = 2, one or two
values for x when j = 3, and at least two values for x, when 7 = 4. Altogether, the
worst case is one out of three, and therefore:

1
v> 3 X Succ§(A) >

Wl M

This completes the proof of the theorem. O

3.2 Size of the Parameters

As was just observed, the security of the basic scheme, consisting in squaring a given
value, is essentially equivalent to the hardness of factoring integers N of the form
N = piq, even if there is a small security loss in terms of exact security.

Thus, the security of the basic scheme is basically equivalent to the hardness of
factoring integers N of the form N = piq. It is unclear whether or not factoring is
easier for such numbers than it is in case of integers with two prime factors. In order
to state an opinion, we briefly review the performances of known factoring algorithms.
Such algorithms fall into three families, according to their sensitivity to the size of the
factors and to the existence of repeated factor. Such a review is also provided in [18]
in order to make some recommendations about the size of the parameters.

Before entering into a more precise discussion, let us mention that the idea of having
moduli of the form pq is not new. For example, it appears in [27]. This remark is not
in terms of intellectual property but rather in terms of the novelty of the idea.

3.2.1 Factoring Techniques Sensitive to the Size of the Smaller Factor

Pollard’s p-Method. The idea behind the method is to iterate a polynomial P with
integer coeflicients that is to say computing x; = P(zy), 22 = P(P(zp)), etc. In time

complexity O(,/p), where p is the smallest prime factor of IV, one finds a collision
modulo p, i.e. two values z; and z;, ¢ # j, such that z; = z; mod p. Computing
ged(z; — xj, N) factors N.

Although there are several optimizations, the p-method can only be used to cast
out “small” factors of an integer (say 30-digit factors). As far as we know, it has not
been used to find significantly larger factors.

The p — 1 Method. Let B be a positive integer. A number is B-smooth if it is of
a product of prime numbers all < B. B-smooth numbers are usually used through a
table of primes < B. The p — 1 method relies on the use of Fermat’s little theorem: if
p — 1 is B-smooth, then the computing ged(N, a®P) — 1) factors N, where £(B) is the
product of all prime factors < B.

The security against this factoring method is adequately addressed by the require-
ment that each of p — 1, ¢ — 1 has a large prime factor in [17, page 14].

The Elliptic Curve Method. The ECM is a generalization of the p — 1 method,
for which the above simple countermeasure is not sufficient. Consider an elliptic curve
mod /N with equation

y* =2 +ax+ 1.

If the number of points of this curve modulo p is B-smooth, then a factor of N can be
discovered along the computation of the scalar multiplication of M, = (0,1) by ¢(B),
according to the group law of the elliptic curve.

The success probability of the algorithm is as follows: Let

L(z) = exp(y/InzInln(z)),

then, the curve is L(p)®smooth with probability L(p)~*/(?®)+°() This is minimal for
a=1/ V/2 and gives an expected running time of L(p)ﬂ”(l) group operations on the
curve.

There have been several improvements of ECM factoring, notably the FFT exten-
sion of P. Montgomery. Furthermore, several implementations of ECM are available.
The current ECM factoring record was established in December 1999, when a prime
factor with 54 digits of a 127-digit composite number N was found with GMP-ECM,
a free implementation of the Elliptic Curve Method (see [20]). The limit used was
B = 15,000, 000.

In a recent paper [8], Richard Brent extrapolates the ECM record to be of D digits
at year about

Y =9.3%vD +1932.3

this would give records of D = 60 digits at year Y = 2004 and D = 70 at year 2010.
Such record would need B ~ 2,900, 000, 000 and require testing something like 340, 000

6

curves. It can be noted that, if Brent’s prediction is correct, parameters of the scheme
under review will become insecure at year Y = 2045 (primes over 488 bits, and thus
D = 146, see [17, page 13]).

3.2.2 Factoring Techniques which are not Sensitive to the Size of the
Smaller Factor

Quadratic Sieve. The quadratic sieve method (QS) factors N by gathering many

congruences of the form
2

a® = (=1)“pi* -y

where pq, - - -, p, is a list of prime numbers < B, called the factor base. This is done by
finding B-smooth numbers of the form Q(a) = (vV/N+a)?>— N. It turns out that there is
a very efficient sieving process that performs the job without division, hence the name
QS. Once enough congruences have been gathered, one obtains another congruence
of the same type with all exponents e; even: this is done by gaussian elimination
mod2. Thus one gets some relation 22 = 42 mod N and, with significant probability,
computing ged(z — y, N) factors N. The time complexity of QS is O(L(N)'+°™) but,
as it uses very simple operations, it is usually more efficient than ECM for numbers
whose smallest prime factor exceeds N/3.

Many improvements of the basic method have been found, notably the multiple
polynomial variation (MPQS) and the large prime variation. This has led to very effi-
cient implementation and, until the mid-nineties, was used to set up factoring records.
The largest number factored by MPQS is the 129-digit number from the “RSA Chal-
lenge” (see [25]). It was factored in April 1994 and took approximately 5000 MIPS-years
(see [1]).

Number Field Sieve. The number field sieve (NFS) is somehow similar to the QS
but it searches for congruences in some number field (algebraic extension of the rational
numbers). The method uses two polynomials with a common root m modulo N. These

polynomials should have as many smooth values as possible. The time complexity of

NFS is
O(e(ln N)/3(Inln N)2/3(c+o(1)))

for a small constant C' (about (64/9)'/% ~ 1.923). This is asymptotically considerably
better than QS. In practical terms, NFS beats QS for numbers of more than about 110
digits (see [14]). The number field sieve was used to factor the 130-digit RSA challenge
number in April 1996, with an amount of computer time which was only a fraction of
what was spent on the old 129-digit QS-record. It was later used to factor RSA-140
in February 1999 with an amount of computer time about 2000 MIPS-years [9]. In
august 1999, the factorization of RSA-155 from the RSA list was obtained [10]. The
amount of computer time spent on this new factoring world record is equivalent to 8000

MIPS-years, whereas extrapolation based on RSA-140 and the asymptotic complexity
formula for NF'S predicted approximately 14000 MIPS-years. The gain was caused by
an improved polynomial search method. The final linear algebra part took 224 CPU
hours and 2 Gbytes of central memory on a Cray C916.

The current record is still in the 512 bit range. However, factoring technology has
spread out: another 512 bit number has been factored in October 2000, by a swedish
team [2]. The experiment was carried through by a group which did not consist of
experts in the area, and, despite the fact that the running time that they used was
not optimal, they were successful. The current factoring record [3] is the completion
of the factorization of 293 + 1 by factoring the remaining divisor called ¢158. This was
achieved in january 2002. Thus, it took more than two years to gain 3 decimal digits.

The main obstacle to a fully scalable implementation of NFS is actually the linear
algebra, although progress has been made (see [21]). In [10], the authors derive the
following formula

Y =13.24D"? + 1928.6

for predicting the calendar year for factoring D-digit number by NFS. The same formula
appears in [8] and produces Y = 2026 for D = 404, i.e. for a 1344 bit modulus, as
proposed in HIME(R) [17, page 13].

3.2.3 Specific Factoring Techniques for Numbers of the Form p?q

In recent work (see [6]), a new factoring method that applies to integers of the form
p?q has been found. The method is based on an earlier result of Coppersmith (see[12]),
showing that an RSA modulus N = pq, with p, ¢ of the same size, can be factored
given half the most significant bits of p. It turns out that, for numbers of the form
N = pq, with p, ¢ of the same size, fewer bits are needed.

Note that disclosing the leading bits of p provides a rough approximation P of p.
What remains to be found is the difference x = p — P. The new method is based on
finding polynomials with short enough integer coefficients, which vanish at modulo
some power p%™ of p. Such polynomials are actually zero at x. Thus, factoring is
achieved by finding the appropriate root. The polynomial itself is computed by the
LLL lattice reduction algorithm from [19]. LLL is run on lattices of dimension d?
with basis vectors of size O(dlog N). Let v be the corresponding computing time.
Taking into account the work-factor tied with guessing the approximation of p, the
total running time is

c+1 1
Dd+ec” ng_f}/

where c is such that ¢ ~ p°.

Comparing the above estimate with the running time for ECM, one can see that
the new method beats ECM for d larger than, approximately /log p. For the suggested
parameters of HIME(R), which set d = 2, the algorithm is certainly impractical.

3.2.4 Conclusion

Based on current estimates, it appears that the proposed parameters for HIME(R)
should remain secure for at least twenty years.

4 Security Analysis

In this section, we briefly recall the formal framework of security proofs for public key
cryptosystem. Next, we review the security proof from [18], and point out problems in
this proof. Finally, we carry our own security analysis.

4.1 Formal framework

An asymmetric encryption scheme is semantically secure if no polynomial-time attacker
can learn any bit of information about the plaintext from the ciphertext, except its
length. More formally, an asymmetric encryption scheme is (¢,¢)-IND, where IND
stands for indistinguishable, if for any adversary A = (A, Ay) with running time
bounded by %, the advantage
Advind(A) —9% Pr (sk, pk) = KC(1%), (m, ml?, s) + A1 (pk) 1
vy | € Epk(mp;r) t Ao(c,s) = b
r+—Q
is < €, where the probability space includes the internal random coins of the adversary,
and mg, m; are two equal length plaintexts chosen by the adversary in the message-
space M. Another security notion has been defined in the literature, called non-
malleability [13]. Informally it states that it is impossible to derive, from a given
ciphertext, a new ciphertext such that the plaintexts are meaningfully related. We
won’t discuss this notion any further since it has been proven equivalent to semantic
security in an extended attack model.

The above definition of semantic security covers passive adversaries. It is a chosen—
plaintext or CPA attack since the attacker can only encrypt plaintexts. In the extended
model, the adaptive chosen—ciphertext or CCA attack, the adversary is given access to
a decryption oracle and can ask the oracle to decrypt any ciphertext, with the only
restriction that it should be different from the challenge ciphertext. It has been proven
in [4] that, under CCA, semantic security and non-malleability are equivalent. This is
the strongest security notion currently considered.

4.2 The Self-Evaluation Report

The self-evaluation report [18] includes a security analysis, which is extremely hard
to read and presumably flawed. For example, we believe that lemma 2.1, page 12,

is incorrect. Firstly, we do not understand the mathematical argument supporting
inequality (2): more precisely, we do not see the reason for having s # s'. Furthermore,
the lemma does not cover situations where several plaintexts are possible. We believe
that a correct version of lemma 2.1 should be derived from ¢, invocations of the
following estimate, which bounds the probability that a single decryption query is not
properly simulated. In this estimate, z*, r*, s* and t* are related to the challenge,
while z, r, s and ¢ are used for the decryption query.

Lemma 1 Under the assumption that s* has not been queried from H,

o 4lge +1) 4
PI'[FaIl] S T %

Proof. One should actually consider up to four pre-images yielding up to four pairs
(ri,8;). To make things simpler, we consider only one such pair (r,s) and multiply
the estimate by four. In other words, we bound the probability of the event Fail; that
the i-th candidate pair yields the adequate redundancy, while it is not available to the
plaintext extractor, which produces a mismatch between the decryption oracle and the
simulator. For the sake of clarity, we omit the ¢ subscript and write Pr[Fail] in place of
Pr[Fail;]. We bound Pr[Fail] by:

Pr[Fail A AskR] + Pr[Fail A —AskR]

< Pr[Fail A AskR A AskS] + Pr[Fail A AskR A ~AskS]
+ Pr[Fail A —AskR]

< Pr|[AskR | =AskS] + Pr[Fail A =AskR].

Firstly, one easily sees that Pr[AskR | —AskS] < gg/2%. Secondly,

Pr[Fail A =AskR] = Pr[Fail A r =7 A =AskR]
+ Pr[Fail A 7 # r* A —AskR]
< Prlr =17
+ Pr[Fail | =AskR A r # 7],

The first term means that H(s)®t = r = r* = H(s*) ®t*, while s* has not been queried
from H. Such an even cannot happen with probability greater than 27%0. The latter
means that the redundancy holds, whereas G(r) is still undefined. This event occurs
with probability 27%!. Finally,

g +1 1

SRR

and we just have to introduce a multiplicative factor 4, to take into account the fact
that we only considered one candidate pair (r, s) instead of four. O

Provided the rest of the proof provided in [18] is correct, as it appears, the security
result becomes:

Pr[Fail] <

10

Theorem 3 Let A be a CCA-adversary A breaking the semantic security of the HIME(R)
scheme, within time bound t, with advantage €, making qp, qc and qm queries to the
decryption oracle and the hash functions G and H, respectively. Then there exists an
adversary B factoring k-bit integer N = plq with success probability ' and within time
bound t' where

8/

v

1 (2qg +4qp(ga + 1) 4qD>
3 ko k1
tl S t+ qG4H - Té'(k) + qH - TCOp(ka 2) + Tgcd(k)v

where T¢ (k) denotes the computing time for encryption, Tcop(k,d) the time needed for
Coppersmith’s algorithm to find small roots of a polynomial of degree d modulo a k-bit
integer, and Tgeq(k) the time required for computing the ged of two k-bit integers

4.3 Security Proof

We now perform our own security analysis, which we base on the machinery introduced
by Shoup [26]. Although it is in a different framework, our proof uses simulations which
are basically similar to those in [18].

We want to prove, in the random oracle, that HIME(R)is IND-CCA, based on the
assumption that factoring is hard. More precisely, we would like to turn a CCA adver-
sary A into a machine inverting f, and apply Theorem 2. However, as shown in [26],
this strategy is actually hopeless. In place, we turn A into a machine that partially
inverts f,i.e. finds a part of the preimage of a given value, leaving only k, trailing bits
unknown. Using Coppersmith algorithm [11], and the assumption that 2k, < k, this is
enough to fully invert f, by recovering the missing bits.

We prove the following.

Theorem 4 Let A be a CCA-adversary A against the semantic security of HIME(R),
within time bound t, with advantage €, making qp, qa and qu queries to the decryption
oracle and the hash functions G and H, respectively. Then:

ge +49p +49cqp 44qp
2k0—1 2k1—1

e <6x SuccfaCt(k, t+qcqn - Te(k)+qm-Teop(k, 2) +Toea(k)) +

where Tg(k) denotes the computing time for encryption, Tcop(k,d) the time needed for
Coppersmith’s algorithm to find small roots of a polynomial of degree d, modulo a k-bit
integer, and Tyq(k) the time required for computing the ged between two k-bit long
integers.

The theorem follows from the next lemma.

11

Lemma 2 Let A be a CCA-adversary A against the semantic security of HIME(R),
within time bound t, with advantage €, making qp, qg and qu queries to the decryption
oracle and the hash functions G and H, respectively. Then there exists an adversary B
inverting f, with success probability €' and within time bound t' where

\» & _d9ct49p+496qp _ 4ap
© =3 2ko 2k1
" < t+qaqu - Te(k) + gu - Teop(k, 2).

4.3.1 Notations and Intuition

In the following, we use starred letters (r*, s*, t* and y*) to refer to the challenge
ciphertext, whereas unstarred letters (r, s, ¢t and y) refer to the various ciphertexts
queried from the decryption oracle.

As appears in the proof of lemma 1, we claim that r cannot match with 7*, unless
s* is queried from H. This is because r* = t* @ H(s*) equals r = t @ H(s) with minute
probability. Thus, if 7 is not queried, then G(r) is random and we similarly infer that
the extractor can safely reject. The argument fails only if s* is queried.

Thus, rejecting when it cannot combine elements of the lists of G and H so as to
build a pre-image of y, the plaintext extractor is only wrong with minute probability,
unless s* has been queried by the adversary.

This seems to show that such an attack is impossible if it is difficult to “partially”
invert f, which means finding s from y = f(s||t). As noted in [18], partial inversion of
f easily leads to complete inversion, using Coppersmith’s algorithm [11].

4.3.2 Formal Proof

As already stated, our method of proof is inspired by Shoup [26]: we define a sequence
Game;, Game,, etc of modified attack games starting from the actual game Game.
Each of the games operates on the same underlying probability space: the public and
private keys of the cryptosystem, the coin tosses of the adversary A, the random oracles
G and H and the hidden bit b for the challenge. Only the rules defining how the view is
computed differ from game to game. To go from one game to another, we repeatedly
use the following lemma from [26]:

Lemma 3 Let E{, E; and F{, Fy be events defined on a probability space
Pr[E; A =F,] = Pr[Es A —=F3] and Pr[F,] = Pr[Fs] =¢ = |Pr[E;] — Pr[Ey]| <e.
Proof. The proof follows from easy computations:

|PI‘[E1] - PI'[EQH = ‘PI’[El A _|F1] +PI‘[E1 A Fl] — PI‘[EQ A _|F2] - PI‘[EQ A F2]|
= ‘PI‘[El A Fl] - PI‘[EQ N F2]|

12

= |Pr[E; |Fy] - Pr[Fy] — Pr[Es | Fy] - Pr[Fy]|
= |Pr[E;|Fi] — Pr[Es [Fy]|-e < e

4.3.3 Simulating the Decryption Oracle.

In order to prove the security against adaptive chosen-ciphertext attacks, it is necessary
to simulate calls to a decryption oracle. As usual, this goes through the design of a
plaintext-extractor.

The latter receives as part of its input two lists of query-answer pairs corresponding
to calls to the random oracles G and H, which we respectively denote by G-List and
H-List. It also receives a valid ciphertext y*. Given these inputs, the extractor should
decrypt a candidate ciphertext y # y*.

On query y = f(s||t), it inspects each query/answer pair (vy,G,) € G-List and
(0, Hs) € H-List. For each combination of elements, one from each list, it defines

0-:670:7@]?(57,“:0’7@5:

and checks whether y = f(0]|@) and whether p is correctly formatted. If so, it outputs
the n leading bits of u and stops. If no such pair is found, the extractor returns a
“Reject” message.

In exceptional cases, there may be several possible outputs for the plaintext-extractor,
the same way decryption errors may formally appear with negligible probability (see
theorem 2.1 [17, page 10]). This is related to the existence of four square roots for
any quadratic residue y: with minute probability more than one candidate may show
the adequate redundancy. Of course we can decide to treat the various square roots
in a prescribed order, say in increasing order. This is not enough to avoid any re-
sulting mismatch between the simulation and the decryption oracle. However, with
this rule, this can only happen if the decryption oracle performs decryption using a
candidate pair (r,s) which is not available for the plaintext extractor. As shown in
Lemma 1, under the assumption that s* has not been asked from H, the probability of
this event is bounded by (gg +1)/2% +1/2% and since there are four candidate pairs,
the probability that the plaintext extractor is wrong is bounded by 4(gg+1) /2% +4/2%

4.3.4 Semantic Security against Adaptive Chosen-Ciphertext Attacks.

In the following, y* is the challenge ciphertext, obtained from the encryption oracle.

Since we have in mind using the plaintext-extractor instead of the decryption oracle,
trying to contradict semantic security, we assume that y* is a ciphertext of m; and
denote by r* its random seed. Thus, we have:

r*=H(s*) @ t* and G(r*) = s* @ (m,,||0k1).

13

Gamey: A pair of keys (pk, sk) is generated using K(1%). Adversary A; is fed with pk,
and outputs a pair of messages (mg, m1). Next a challenge ciphertext is produced
by flipping a coin b and producing a ciphertext y* of m,. This ciphertext comes
from a random r* & {0,1}% and a string * such that y* = f(z*). We set
T* = s*|| t*, where s* = (m, || 0¥') ® G(r*) and #* = r* @ H(s*). On input y*, A4,
outputs bit b'.

Note that the adversary is given access to a decryption oracle Dy during both

steps of the attack. The only requirement is that the challenge ciphertext y*
cannot be queried from the decryption oracle.

We denote by Sy the event b’ = b and use a similar notation S; in any Game;
below. By definition, we have

Pr[So] = 1/2 + £/2.

Game;: We modify the above game, by making the value of the random seed r* explicit
and moving its generation upfront. In other words, one randomly chooses ahead
of time, r+ & {0,1}*0 and g+ £ {0,1}£~*%0~1 "and uses r* instead of r*, as well
as g instead of G(r*). The game obeys the following two rules:

Rule 1. 7 = 7" and s* = (m, || 0%1) @ g™, from which it follows that
t* =r*® H(s"),2* = s*||t* and y* = f(z¥);

Rule 2. whenever the random oracle G is queried at 7+, the answer is g*.

Since we replace a pair of elements, (r*, G(r*)), by another, (r*, g7), with exactly

the same distribution:
PI'[Sl] = PI'[S()]

Gamey: In this game, we drop the second rule above and restore (potentially incon-
sistent) calls to G. Therefore, ¢g* is just used in z* but does not appear in the

computation. Thus, the input to Ay follows a distribution that does not depend
on b. Accordingly, Pr[Ss] = 1/2.

One may note that Game; and Gamey may differ if 7* is queried from G. Let AskG,
denotes the event that, in Gamey, 7* is queried from G. This covers queries coming
from the adversary or the decryption oracle, but not calls from the encryption
oracle for producing the challenge. We will use an identical notation AskG; for
any Game; below. Then

IPr[Ss] — Pr[Si]| < Pr[AskGs).

14

Gamez: We now define s* as an independent random variable, as well as H(s*). In other
words, one randomly chooses ahead of time, s ¥ia {0, 1}*=ko=1 and A+ ¥id {0, 1},
and uses sT instead of s*, as well as h™ instead of H(s*). The only change is that
s* = st instead of (my || 0%) @ g*. This implicitly defines g* from s™ and b. The
game uses the following two rules:

Rule 1’. gt = (my || 0") ® s™ and t* = r* & h;

Rule 2°. whenever the random oracle H is queried at s*, the answer is h™.

Since we replace the quadruple (s*, H(s*), g™, b) by another with exactly the same
distribution:
Pr[AskGs] = Pr[AskGs].

Gamey: In this game, we drop the second rule above and restore (potentially incon-
sistent) calls to H. Therefore, h' is just used in z* but does not appear in the
computation. One may note that Games and Game, may differ if s* is queried
from H. Let AskH, denote the event that, in Game,, s* is queried from H. This
covers queries form the adversary, or the decryption oracle, but not calls from the
encryption oracle for producing the challenge. We will use an identical notation
AskH; for any Game; below. Then

|Pr[AskGy] — Pr[AskGs]| < Pr[AskH,].

Furthermore, r* = t* @ h*' is uniformly distributed, and independent of the
adversary’s view, since h' is never revealed: Pr[AskG,] < (g + 4qp)/2%, where
gg and ¢p denote the number of queries asked by the adversary to G, or to the
decryption oracle, respectively.

Gamej: In order to evaluate AskH,, we again modify the previous game. When manu-
facturing the challenge ciphertext, we simply set 4* = y*, ignoring the encryption
algorithm altogether. The value y* is given as an auxiliary data, generated by
yt = f(at) for xt pia {0,1}*-1, following the definition of f. Once again, the
distribution of y* remains the same. The previous method defining y* = f(s*||t*),
with s* = s* and t* = A" & r* was already generating the input of f with a
uniform distribution over the k — 1-bit elements. Thus, we have:

Pr[AskH;] = Pr[AskH,].

We now deal with the decryption oracle, which has remained perfect up to this
game.

15

Gameg: We make the decryption oracle reject all ciphertexts y for which it meets at
decryption time an 7 value not been previously queried from G by the adversary.
Since there are at most four square roots x of y in the appropriate range, four such
values of » may appear. This makes a difference only if y is a valid ciphertext,
while G(r) has not been asked. Since G(r) is uniformly distributed, G(r) & s
satisfies the required redundancy with probability less than 1/2%. Summing up
for all decryption queries and all candidate values for r, we get

4
Pr[AskHg] — Pr[AskH;]| < %

Game;: We now make the decryption oracle reject all ciphertexts y for which it meets at
decryption time an s value not been previously queried from H by the adversary.
This makes a difference only if y is a valid ciphertext, and H(s) has not been
asked, while the corresponding G(r) has been queried (otherwise it has already
been rejected in the previous game). Since r = H(s) @t is uniformly distributed,
it has been queried from G by the aversary, with probability less than gq/2"%.
Summing up for all decryption queries and all candidate values for s, we get

|Pr[AskH;| — Pr[AskHg]| < 4¢gp x ;]TGO

Gameg: We finally replace the decryption oracle by the plaintext-extractor which per-
fectly simulates the decryption, since all » and s values needed for decryption
have been previously queried:

Pr[AskHs] = Pr[AskH,].

If AskHg happens, then, for at least one element s queried to H, there exists
t € {0,1}* such that (¢t + s x 2¥)? = y™ mod N.
Trying elements s queried from H during this game, one can extract a square root
of y*, smaller than 25~ by using Coppersmith’s algorithm [11]:

Pr[AskHg] < Succ$" (" + guTcop(k, 2)),
where " is the running time of Gameg.

Therefore,

g = [Pr[So] — Pr[Ss]| < Pr[AskG,] < Pr[AskGy] + Pr[AskH,]

ge +4q9p ge +49p 4qp
< ok + Pr[AskH;] < ko + ok + Pr[AskHg|
gc +49p 4qp qG
S 2k0 =+ 2191 + 4qD X % + PI‘[ASkH7]
4 4 4
< q9c + 49p + 44pqc n qdp +SUCC;W(t/)_

2ko 2ki

16

To conclude the proof of Lemma 2, it remains to comment on the running time
t'" = t" 4+ quTcop(k,2). Although the plaintext-extractor is called ¢p times, there is
no ¢p multiplicative factor in the bound for ¢’. This comes from a simple book-
keeping argument. Instead of only storing the lists G-List and H-List, one stores an
additional structure consisting of tuples (v, G,,d, Hs,y). A tuple is included only for
(v,G,) € G-List and (0, Hs) € H-List. For such a pair, one defines 0 =46, § = v @ Hy,
p = G, @96, and computes y = f(0,0). If the redundancy holds for p, one stores
the tuple (v,G,,d, Hs,y). The cumulative cost of maintaining the additional struc-
ture is ggquTe(k) but, handling it to the plaintext-extractor allows to output the
expected decryption of y, by table lookup, in constant time. Of course, a time-space
tradeoff is possible, giving up the additional table, but raising the computing time to

ap9cquTs (k).

4.4 Alternative Proof

We now propose an alternative security analysis, which leads to the following exact
security result.

Theorem 5 Let A be a CCA-adversary A against the semantic security of HIME(R),
within time bound t, with advantage €, making qp, qg and qu queries to the decryption
oracle and the hash functions G and H, respectively. Then,

gec +4q9p +49cqp . 4qp
Qko—1 k1—1 .

£ < 6 x Succ®(k,t + qu - (qp + 1) - Teop(k, 2) + Tgea (k) +

Note that the result differs from the previous only in terms of the time complexity.

Our alternative proof differs from the previous one in the decryption simulation, for
which we use Coppersmith’s algorithm [11]. The new plaintext-extractor still receives
as part of its input two lists of query/answer pairs corresponding to calls to the random
oracles G and H, which we respectively denote by G-List and H-List. It also receives a
valid ciphertext y*. Given these inputs, the extractor attempts to decrypt a candidate
ciphertext y # y*.

On query y = f(s]|t), it inspects each query/answer pair (o, H,) € H-List. For each
o, using Coppersmith’s algorithm, it computes all § € {0, 1}*0 such that (§+0 x 2%0)? =
y mod N. It then defines

s=o,t=0,r=t®H, M =G(r)®s,

and checks whether the redundancy holds. If for some s, the redundancy holds for
M, the plaintext-extractor returns the n leading bits of M. Otherwise, it returns a
“Reject” message.

17

Comments. Once again, in exceptional cases, there may be several possible outputs
for the plaintext-extractor. Again, one can decide to treat the various square roots in
a prescribed order. Rererring to the proof in section 4.3.4, we see that the Gameg and
Game; duly eliminate, as before, all cases where a mismatch could appear between the
plaintext extractor and the decryption oracle. The cost of the simulation is linear in
qu only, which saves a ¢ factor. However, the bookkeeping arguments that allowed
to avoid the gp factor is lost. On the other hand, no additional table is required.
Therefore, the new reduction has memory requirement O(qg + qg), instead of O(qeqn)
in the reductions proposed in [18] and above in the present report.

4.5 Practical Security Estimates

We now try to understand whether the figures shown above can be used to derive
meaningful estimates for practical parameters, based on the time an adversary could
spend on breaking semantic security. As in the specification, we set ky = 128 and
ki = 128, d = 2, and try to obtain a lower bound on k£ > 1024. Following many
authors, we take the usual values for ¢¢, gy and gp:

qa ~ qu ~ 2% and qp ~ 2°°,

and we obtain that such a “standard” adversary could be used for factoring with success
probability &', within a time bound ¢ where

€

v

, 1 200 4 4.230 44.2% 4.2% Je_ 1
Q & - 9127 T 9127 =6 9237

' <t + 2%k, 2) <t +2'0K5

For this time upper-bound, we assumed Tcop(k,2) < 1000 - k3. Finally, an adversary
able to learn one bit with advantage 1/2, within time 2'%°k3 can be used to factor n
within less than 2'91%3.

In the table below, we compare the factoring time of the reduction with those coming
from the estimates for the complexity of ECM and NFS, Crcoum(|p|) and Cyrs(k), as
reported in Section 3.2. The last column provides the size n of the plaintext. Note
that the size of the ciphertext is k.

|p| k| logCrcum(lp|) | log Cyrs(k) | 101 +3logk | n
341 | 1024 81 85 131 768
448 | 1344 86 96 134 1088
512 | 1536 93 102 134 1280
682 | 2048 110 115 134 1792

1024 | 3072 139 137 137 2816

18

] [~ fpeo] [-]

® ©
;

: t IENE e

OAEP padding OAEP+ padding

Figure 2: OAEP and OAEP+ Paddings

Thus, if one believes that ECM or NFS are best possible, the reduction suggests to
set parameter k£ above 3072. This shows that the reduction only provides a qualitative
assurance that the scheme is not flawed and that it cannot be interpreted with the
suggested parameters.

5 Comparison with other Schemes

5.1 RSA-OAEP

Figure 2, shows the OAEP construction, which can be used in conjunction with the
RSA function [24]. On this picture, r is a random string of bit-length ko, m is a
message of bit-length n, and k; is the bit-length of the redundancy, of the message.
The bit-length of the modulus is k = n + ko + k1 + 1, and k& is significantly larger than
ko, say k > 2kq. Under these assumptions, the following theorem is proven in [16]:

Theorem 6 Let A be a CCA—-adversary against the semantic security of RSA-OAEP,
with running time bounded by t and advantage £, making qp, qg and qg queries to the
decryption oracle, and the hash functions G and H respectively. Then, the RSA problem
can be solved with probability &' greater than

g (2QDQG +4dp+4ec 2qp 32)

4 9ko oki " 9k—2ko

within time bound t' < 2t + qi - (g + 29g) x O(k?).

19

It can be noted that the probability of success that the reduction is worse than in
theorem 5. Firstly, the success probability &' is quadratic in €. More importantly, the
time complexity is quadratic in the number of queries to the random oracles. We can
use the estimate 121 + 3logk for the (logarithmic) time complexity derived from a
“standard” adversary.

k logCnrs(k) | 121 + 3logk n
1024 85 151 768
1344 96 152 1088
1536 102 153 1280
2048 115 154 1792
3072 137 155 2816
4096 155 157 3840

Interpreting the table above, as was done in section 4.5, would thus lead to larger
moduli.

5.2 RSA-OAEP+

On Figure 2, the OAEP+ construction [26] is shown. This construction can be used
in conjunction with the RSA function [24]. On this picture, r is a random string of
bit-length kg, m is a message of bit-length n, and R is a randomly looking function
outputting k; bits of redundancy. The bit-length of the modulus is k = n+kq+ k1 + 1.
Under these assumptions, the following theorem is proven in [26]:

Theorem 7 Let A be a CCA-adversary against the semantic security of RSA-OAEP+,
with running time bounded by t and advantage €, making qp, qa, qg and qr queries to
the decryption oracle, and the hash functions G, H and R respectively. Then, the RSA
problem can be solved with probability ' greater than

¢ antqr (ap+1)-gq
2 ok 2ko

within time bound t' <t + qqqu - Te (k).

Here, the probability £’ is much tighter. However, the reduction remains quadratic in
the number of queries to the random oracles. Thus, the situation is essentially similar
to the case of RSA-OAEP.

5.3 RSA-SAEP and Rabin—-SAEP

Figure 3 shows the SAEP construction from [7], which can be used in conjunction
both with the RSA function [24], and the Rabin squaring function [23], also used in

20

(@
(@

: f RN e

SAEP padding SAEP+ padding

Figure 3: SAEP and SAEP+ Paddings

HIME(R). On this picture, r is a random string of bit-length kg, m is a message of bit-
length n, and k; is the bit-length of the redundancy. The bit-length of the modulus is
k = n+ko+ki+2, where k is significantly larger than ko, say k > 4n and k > 2(n+k;).
Under these assumptions, the following theorem is proven in [7]:

Theorem 8 Let A be a CCA—adversary against the semantic security of Rabin—-SAEP,
with running time bounded by t and advantage €, making qp and qg queries to the
decryption oracle, and the hash function G respectively. Then, RSA moduli can be
factored with probability ' greater than

€ 2qp 2qp
6 (1_ 2k 2ko)

within time bound t' <t + qpquTcop(k,2) + qpTcop(k,4).

The reduction is thus similar to the one provided for HIME(R), hence the table:

k| logCnrs(k) | 101 +3logk | n
1024 85 131 256
1344 96 134 336
1536 102 134 384
2048 115 134 512
3072 137 137 768

Note that the decryption algorithm is less efficient than the corresponding algorithm
of HIME(R). Furthermore, the restriction on the size of the message is quite strong.

A similar result can be proven for RSA-SAEP, with exponent e = 3 only. The
reduction is relative to the RSA problem, and the following size constraints are needed:
k > 9n and k > 3(n + k1), which are worse than before.

21

5.4 RSA-SAEP+ and Rabin—-SAEP-+}

Figure 3 shows the SAEP+ construction from [7], which can be used in conjunction
both with the RSA function [24], and the Rabin squaring function [23], also used in
HIME(R). On this picture, r is a random string of bit-length kg, m is a message of
bit-length n, and R is a randomly looking function outputting k; bits of redundancy.
The bit-length of the modulus is & = n + kg + k1 + 2, where k is significantly larger
than ko, say k > 2(n + k1). Under these assumptions, the following theorem is proven
in [7]:

Theorem 9 Let A be a CCA-adversary against the semantic security of Rabin—-SA EP+,
with running time bounded by t and advantage €, making qp, qc and qr queries to the
decryption oracle, and the hash functions G and R respectively. Then, RSA moduli can
be factored with probability €' greater than

€ dp 4D
6 % (1 C ok 270)
within time bound t' <t + quTcop(k, 2).

The reduction is very efficient, hence the table:

k logCnrs(k) | 71+ 3logk | n
1024 85 101 384
1344 96 104 544
1536 102 104 640
2048 115 104 896

Note that the restriction on the size of the message is still quite strong.
There is a similar security result for RSA-SAEP+, with identical restrictions on
the size of the message, but without any restriction on the exponent e:

Theorem 10 Let A be a CCA-adversary against the semantic security of RSA-SAEP+,
with running time bounded by t and advantage €, making qp, qc and qr queries to the
decryption oracle, and the hash functions G and R respectively. Then, the RSA problem
can be performed with probability &' greater than

29p 2qp
2
e X (1— ok — ok

within time bound t' < 2t + ¢4 Te (k).

Again, the reduction is quadratic in the number of queries asked to the random oracles.
This can be interpreted as suggesting moduli with at least 4096 bits.

22

5.5 EPOC-2

EPOC-2 [22], uses moduli of the same form as in HIME(R), N = p%g, and its security
is similarly based on factoring. More precisely, let A be a CCA-adversary against
the semantic security of EPOC-2, with running time bounded by ¢ and advantage ¢,
making qp, gg and qm queries to the decryption oracle, and the hash functions G and
H respectively. Then, integers of the form N = p?q can be factored with probability
approximately €/2 within time bound ¢ + (¢ + ¢u) X O(k*). The reduction here is
quite tight.

Ip| k log Crom(|p]) | logCnrs(k) | 61+ 3logk
341 | 1024 81 85 91
512 | 1536 93 102 94
682 | 2048 110 115 94

Note however that EPOC-2 is a hybrid scheme, and, as such, cannot be directly com-
pared to the other public key encryption schemes.

5.6 Summary

The following table summarizes our findings. It shows the practical values of the bit
length of the modulus suggested by the designers, as well as the theoretical value
derived by reduction from the “standard” adversary, as above.

Scheme Problem Reduction suggested | theoretical
cost (approx.) bitsize k£ | bitsize k
HIME(R) Fact(p?q) apqm % O(k3) 1344 3072
RSA-OAEP RSA(pg,e) | 2qqqm x O(k?) 1024 4096
RSA-OAEP+ | RSA(pg, e) qeqr x O(k?) 1024 4096
Rabin-SAEP Fact(pq) apqr x O(k?) 1024 3072
Rabin-SAEP+ | Fact(pq) qr X O(k?) 1024 2048
EPOC-2 Fact(p?q) | (¢¢ + qu) x O(K?) 1152 2048

We also include another table, that shows the respective time complexity T¢(k) and
Tp(k) of encryption and decryption, measured in number of modular multiplications of
k-bit integers. In this table, we have set e = 2!6 41 for the RSA public exponent, and
we have chosen 128 bit random values for EPOC-2. The table also shows the message
size n, and the size c¢ of the ciphertext.

23

Scheme Te(k) | Tp(k) n c
HIME(R) 1 [3k/27| k-256 2
RSA-OAEP 17 3k/8 k-256 k
RSA-OAEP+ 17 3k/8 k-256 k
Rabin-SAEP 1 3k/8 k/4 k
Rabin-SAEP+ 1 3k/8 | (k—128)/4| k
EPOC-2 384 124 any n k+n

In terms of complexity, the three best schemes appear to be HIME(R), Rabin—
SAEP+ and EPOC-2. They all rely on factoring. HIME(R) and Rabin-SAEP+ have
a very efficient encryption algorithm, and HIME(R) and EPOC-2 have a very efficient
decryption algorithm. In terms of bandwith, one notes that Rabin-SAEP+ limits the
size of the plaintext to k/4, whereas EPOC-2 provides an hybrid encryption scheme,
which can encrypt plaintext of any length, with a constant overhead of k£ bits. As for
HIME(R), it can encrypt up to k& — 256 bit into a k-bit ciphertext. In a way, HIME(R)
achieves one of the best performances. Note however that, as stated in section 4.5, the
security analysis does not formally support a 1344 bit modulus.

6 Conclusion

Based on our security analysis, we believe that the public key cryptosystem HIME(R)
has provable security, based on factoring, and is presumably secure with the proposed
parameters. Furthermore, it ranks extremely well, in terms of efficiency, compared to
similar schemes.

On the other hand, we are in an uncomfortable situation to strongly recommend
the scheme, since we found the security proof provided by the designers rather uncon-
vincing.

References

[1] D. Atkins, M. Graff, A. K. Lenstra, and P. Leyland. The Magic Words are Squeem-
ing Ossifrage. Asiacrypt '94, Lecture Notes in Computer Science 917, (1995), pages
263-277.

[2] F. Almgren, G. Andersson, T. Granlund, L. Ivansson and S. Ulfberg. Singh
challenge 10.
http://wwwhome.cs.utwente.nl/ crypto/challenge-10.html

[3] F. Bahr, J. Franke, and T. Kleinjung. Factorization of c¢158.
http://www.crypto-world.com/announcements/c158. txt

24

[4] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among Notions
of Security for Public-Key Encryption Schemes. Crypto 98, Lecture Notes in
Computer Science 1462, (1998), pages 26—45.

[6] M. Bellare and P. Rogaway. Optimal Asymmetric Encryption — How to Encrypt
with RSA. Eurocrypt '94, Lecture Notes in Computer Science 950, (1995), pages
92-111.

[6] D. Boneh, G. Durfee, and N. Howgrave-Graham. Factoring N = p"q for large r,
Crypto ’99, Lecture Notes in Computer Science 1666, (1999), pages 326-337.

[7] D. Boneh. Simplified OAEP for the RSA and Rabin Functions. Crypto '01, Lecture
Notes in Computer Science 2139, (2001), pages 275-291.

[8] R. P. Brent. Some Parallel Algorithms for Integer Factorisation. Euro-Par ’99,
Lecture Notes in Computer Science 1685, (1999), 1-22.

[9] S. Cavallar, B. Dodson, A. K. Lenstra, P. Leyland, W. Lioen, P. L. Montgomery,
B. Murphy, H. te Riele, and P. Zimmermann. Factorization of RSA-140 using
the Number Field Sieve. Asiacrypt ’99, Lecture Notes in Computer Science 1716
(1999), pages 195-207.

[10] S. Cavallar, B. Dodson, A. K. Lenstra, W. Lioen, P. L. Montgomery, B. Murphy,
H. te Riele, K. Aardal, J. Gilchrist, G. Guillerm, P. C. Leyland, J. Marchand, F.
Morain, A. Muffett, C. Putnam, C. Putnam, and P. Zimmermann. Factorization
of a 512-Bit RSA Modulus. Eurocrypt ’00, Lecture Notes in Computer Science
1807 (2000), pages 1-18.

[11] D. Coppersmith. Finding a Small Root of a Univariate Modular Equation. Euro-
crypt '96, Lecture Notes in Computer Science 1070, (1996), pages 155-165.

[12] D. Coppersmith. Finding a Small Root of a Bivariate Integer Equation; Factoring
with High Bits Known. Eurocrypt 96, Lecture Notes in Computer Science 1070,
(1996), pages 178-189.

[13] D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. Proc. of the 23rd
STOC. ACM Press, New York, 1991.

[14] R.-M. Elkenbracht-Huizing. An Implementation of the Number Field Sieve. Ezxp.
Math. 5, (1996), pages 231-253.

[15] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is Secure
under the RSA Assumption. Crypto '01, Lecture Notes in Computer Science 2139,
(2001), pages 260-274.

25

[16] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is Secure
under the RSA Assumption. Journal of Cryptology, (2002), to appear.

[17] Specification of HIME(R) Cryptosystem, Hitachi Ltd. (2001),
http://www.sdl.hitachi.co.jp/crypto/hime/.

[18] Self Evaluation Report, HIME(R) Cryptosystem, Hitachi Ltd. (2001),
http://www.sdl.hitachi.co.jp/crypto/hime/.

[19] A. K. Lenstra, H. W. Lenstra, and L. Lovész. Factoring Polynomials with Rational
Coefficients. Mathematische Ann., 261, (1982), pages 513-534.

[20] N. Lygeros, M. Mizony, and P. Zimmermann. A New ECM Record with 54 Digits.
http://www.desargues.univ-lyonl.fr/home/lygeros/Mensa/ecm54.html.

[21] P. L. Montgomery. A Block Lanczos Algorithm for Finding Dependencies over
GF(2). Eurocrypt '95, Lecture Notes in Computer Science 921, (1995), pages
106-120.

[22] T. Okamoto, S. Uchiyama, and E. Fujisaki. EPOC: Efficient Probabilistic Public-
Key Encryption. Submission to IEEE P1363, ISO, CRYPTREC (1998).

[23] M. O. Rabin. Digitalized Signatures. Foundations of Secure Computation, Aca-
demic Press, New York, (1978), pages 155-166.

[24] R. L. Rivest, A. Shamir, and L. M. Adleman. Cryptographic Communications
System and Method. US patent 4 405 829, September 20, 1983 (filed 14/12/1977).

[25] RSA Laboratories, Information on the RSA Challenge.
http://www.rsa.com/rsalabs/html/challenges/html.

[26] V. Shoup. OAEP Reconsidered. Crypto ’01, Lecture Notes in Computer Science
2139, (2001), pages 239-259.

[27] T. Takagi. Fast RSA-Type Cryptosystem Modulo pfq. Crypto '98, Lecture Notes
in Computer Science 1462, (1998), pages 318-326.

26

