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1 Executive Summary

In recent years, some attacks on fixed-padding RSA signature schemes have been reported in the
literature. This report evaluates the implications of these attacks on the RSA signature schemes
specified in the PKCS#1 v1.5 [27], ANSI X9.31 [1], ISO 9796-1 [14] and ISO 9796-2 [15]
standards.

2 Introduction

The RSA signature scheme was introduced in 1977 [24]. Since then many versions have been
standardized and used in practice. The different versions can be divided into two categories:

1. RSA signature schemes with appendix first compute the hash value of the message, and
then compute a signature by applying the RSA private-key operation to the (possibly
padded) hash value. Both the message and the signature are then transmitted to the re-
ceiver. The receiver applies the RSA public-key operation to the signature, and compares
the result to the hash of the message. The signed message is accepted if and only if these
values are the same. The PKCS#1 v1.5 [27] and ANSI X9.31 [1] RSA signature schemes
are examples of signature schemes with appendix.

2. RSA signature schemes with message recovery first add some redundancy to the message,
and then apply the RSA private-key operations to the padded message to obtain the sig-
nature. The signature only is transmitted to the receiver, who applies the RSA public-key
operation to recover the padded message and thereafter the message. The signed message
is accepted if and only if the padded message contains the correct form of redundancy.
The RSA signature schemes specified in ISO 9796-1 [14] and ISO 9796-2 [15] are exam-
ples of signature schemes with message recovery.

SECURITY. A signature scheme is said to be secure if it is existentially unforgeable against
chosen-message attacks [11]. Informally, this means that an adversary who is able to obtain
entity A’s signatures on any messages of its choice is unable to successfully forge A’s signature
on some other message. This notion of security is a very strong one—the adversary may have no
control over the contents of the message in the existential forgery and therefore the forgery may
be of no practical use to her. A potentially more damaging attack is a selective forgery whereby
the adversary is able to forge A’s signature of some particular message of her choosing.

A necessary condition for the security of all RSA signature schemes is that the problem of
inverting the RSA function (i.e., finding eth roots modulo n) be intractable. Another necessary
condition for the security of all RSA signature schemes with appendix is that the hash function
employed be collision resistant.
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In this report, we shall not be concerned with the intractability of the RSA function (nor of the
integer factorization problem), with specific security properties of the hash function, or with the
efficiency of the schemes. Instead, we shall focus our attention on attacks that exploit the fixed-
padding mechanisms used in the PKCS#1 v1.5, ANSI X9.31, ISO 9796-1 and I1SO 9796-2 RSA
signature schemes. We note that unlike RSA-PSS and RSA-FDH? [3], none of these schemes
have been proven to be secure under reasonable assumptions.

ORGANIZATION. The remainder of this report is structured as follows. The basic RSA sig-
nature scheme and the Desmedt-Odlyzko multiplicative attack which exploits its multiplicative
property are reviewed in Section 3. The resistance of the PKCS#1 v1.5 and ANSI X9.31 RSA
signature schemes with appendix to fixed-padding attacks is studied in Section 4. Section 5
considers the resistance of the ISO 9796-1 and 1SO 9796-2 signatures schemes to fixed-padding
attacks. Our conclusions are stated in Section 6.

3 Multiplicative Property of RSA

3.1 RSA Key Generation

The RSA key generation procedure is common to all RSA-based signature schemes. To generate
an RSA key pair, each entity A does the following:

Randomly select two large distinct primes p and g of the same bit length.
Compute n= pq and @(n) = (p—1)(q—1).

Select an arbitrary integer e, 1 < e < ¢(n), such that gcd(e, ¢(n)) = 1.
Compute d, 1 < d < ¢(n), suchthated =1 (mod @(n)).

A’s public key is (n,e); A’s private key is d.

o~ WD

NOTES.

1. nis called the RSA modulus.

2. e s called the encryption exponent.

3. d is called the decryption exponent.

4. If nis a k-bit integer, then the RSA scheme is referred to as k-bit RSA.

1Bellare and Rogaway proved that RSA-PSS and RSA-FDH are secure in the so-called random oracle model
[2] under the assumptions that the problem of finding eth roots modulo n is intractable and that the hash function
employed is a public random function.
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5. RSA signature verification involves modular exponentiations by the number e—comput-
ations of the form M® mod n. To speed signature verification, a widely-employed strategy
is to select a small encryption exponent e, such as e = 3 or e = 216+ 1, With such a
choice, RSA signature verification is much faster than RSA signature generation. Note
that RSA signature generation cannot be sped up by selecting a small decryption exponent
d without incurring a significant security risk [29, 4].

3.2 Basic RSA Signature Scheme

Let (n,e) be A’s RSA public key, and let d be A’s corresponding private key.

SIGNATURE GENERATION. To sign a message m, A does the following:

1. Compute M = H(m) where H is a cryptographic hash function such as SHA-1.
2. Use the private key d to compute s = M9 mod n.
3. Send the signature s and the message m to B.

SIGNATURE VERIFICATION. The verifier B does the following:

1. Obtain an authentic copy of A’s public key (n,e).
2. Compute M = H(m).

3. Compute M’ = s mod n.

4. Accept A’s signature provided that M = M’.

3.3 Multiplicative Attacks

Multiplicative attacks on RSA signature schemes all exploit the multiplicative property? that

(mim2)d=mimd  (mod n). (1)

If RSA signature generation did not use a hash function, i.e., s = m% mod n for m € [0,n — 1],
then an active attacker could forge the signature of any message m as follows:

1. Select arbitrary my € [1,n— 1] and compute my = mmI1 mod n (so m = mymy mod n).
2. Obtain A’s signatures s1, S on my and my, respectively.
3. Then it follows from (1) that A’s signature on m is s = s1S2 mod n.

2also known as the homomor phic property.
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To avoid this selective forgery attack, the message is padded (or formatted) prior to application
of the RSA operation. We let P(m) denote the padded message corresponding to m, so the
signatureon miss = P(m)OI mod n. The padding mechanism is chosen so that given a message
m it is (hopefully) infeasible to find messages ms and m; such that P(m) = P(m1)P(m2) mod n.

The most common way to format a message m is P(m) = H(m), where H is a cryptographic
hash function. This results in the basic RSA signature scheme presented in Section 3.2. In
1985, Desmedt and Odlyzko [8] discovered the following selective forgery attack on basic RSA
signatures.

DESMEDT-ODLYZKO SELECTIVE FORGERY ATTACK. For concreteness, we describe the at-
tack in the case where n is a 1024-bit integer, e is prime (e.g., e = 3 or e = 216+ 1), and the
hash function H is SHA-1. The adversary’s goal is to forge A’s signature s on a variant m’ of a
message m.3

h

1. Select a smoothness bound B = pt, where p; denotes the it prime number.

2. Select random messages mq,my, ..., mt until H(m;) are B-smooth:
to,
H(mj) = I_ijljv 1<i<t
]:

and the exponent vectors vi = (Vi1, Viz, . .., Vit) are linearly independent over Ze.
3. Obtain the signatures s; of the m;: s = H(m;)4 mod n.
4. Select variants m’ of m until H(m’) is B-smooth:

t
H(m') =[] g
-1

5. Solve the linear system of equations
CiVi+CoVo+ -+ -+ CtVt =W

forc1,Co,...,Ct € Ze.

6. Now,
W =C1V1+CoVo+ -+ CiVt + €U

over the integers. Hence
t e
N — c C2... Gt Ui
H(m') = H(mg)"H(m2)"---H(m) (j[llpj’)-

3For example, if mis a fragment of plain text then the variants m’ can be obtained by inserting extra spaces
between words of mso that the meaning of mis unchanged.
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Raising both sides to the power d and reducing modulo n gives:
t .
s=s7is%-s¢ [ p;’ mod n. )
]:
Thus s can be computed according to the formula (2).

Using standard results on the distribution of smooth integers, we find that if B ~ 220 then the
number of chosen messages in the attack is about 216, while the number of steps in the algo-
rithm (hash function evaluations + smoothness testing) is about 24°. Thus the attack must be
considered as practical.

The attack can be prevented by using a hash function whose range is as large as the modulus
size—this is the idea behind RSA-FDH. In that case, the probability that a random hash value
is smooth is negligible. Indeed, running the attack will be slower than the number field sieve
factoring algorithm which searches for smooth integers of significantly smaller sizes. Another
approach to preventing the attack is to pad the hash value so that the resulting padded hash value
has the same bitlength as n—this is the idea behind the padding mechanisms in PKCS#1 v1.5
and ANSI X9.31.

4 RSA Signature Schemeswith Appendix

4.1 PKCS#1v1.5RSA Signature Scheme

We present the PKCS#1 v1.5 RSA signature scheme as described in [27]%. This scheme is a re-
finement of the basic RSA signature scheme (Section 3.2). It specifies a method for padding the
hashed message in order to defeat known attacks on basic RSA such as the Desmedt-Odlyzko
multiplicative attack described in Section 3.3.

Let (n,e) be A’s RSA public key, and let d be A’s corresponding private key. The integer n is k
octets in length. (For example, if n is a 1024-bit modulus, then k = 128.) H is a hash function
such as SHA-1 that is identified by some octet string HID. For SHA-1, HID is 15 octets in
length. For SHA-256, SHA-384 and SHA-512, HID is 18 octets in length.

SIGNATURE GENERATION. To sign a message m, A does the following:

1. Compute h = H(m).
2. Form the following octet string M of length k octets:
00||01||PS||00||HID||h,

where PS denotes a string of ‘FF’ octets. The length of PS must be at least 8 octets.

4The PKCS#1 v1.5 RSA signature scheme described in PKCS#1 v2.1 [27] is the same as the original description
in the PKCS#1 v1.5 standard [26].
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3.
4.

Use the private key d to compute s = M9 mod n.
Send the signature s and the message m to B.

SIGNATURE VERIFICATION. The verifier B does the following:

4.2

1. Obtain an authentic copy of A’s public key (n,e).

2. Compute M’ = s® mod n, and convert M’ to an octet string of length k octets.
3.

4. Form the following octet string M of length k octets:

Compute h = H(m).

00([01 | PS |00 |HID||h,

where PS denotes a string of ‘FF’ octets.

. Compare M and M’. If M = M’ then accept the signature; otherwise reject the signature.

ANSI X9.31 RSA Signature Scheme

We present the ANSI X9.31 RSA signature scheme [1]. This scheme is a refinement of the basic
RSA signature scheme (Section 3.2). It specifies a method for padding the hashed message in
order to defeat known attacks on basic RSA such as the Desmedt-Odlyzko multiplicative attack
described in Section 3.3.

Let (n,e) be A’s RSA public key, and let d be A’s corresponding private key. The integer n is k
octets in length. (For example, if n is a 1024-bit modulus, then k = 128.) H is a hash function
such as SHA-1 that is identified by some string HID of length 2 octets. For SHA-1, HID is the
hexadecimal string ‘33CC"’.

SIGNATURE GENERATION. To sign a message m, A does the following:

1.
2.

3.
4.

Compute h = H(m).
Form the following octet string M of length k octets:
6||PS|/h|HID,

where PS denotes the hexadecimal string ‘BBBB...BBA’.
Use the private key d to compute s = M9 mod n.
Send the signature s and the message m to B.

SIGNATURE VERIFICATION. The verifier B does the following:

1.

Obtain an authentic copy of A’s public key (n,e).
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2. Compute M’ = s® mod n, and convert M’ to an octet string of length k octets.
3. Compute h =H(m).
4. Form the following octet string M of length k octets:

6||PS|/h|HID,

where PS denotes the hexadecimal string ‘BBBB...BBA’.
5. Compare M and M’. If M = M’ then accept the signature; otherwise reject the signature.

STRONG PRIMES. ANSI X9.31 mandates that the primes p and q satisfy the following strong
prime conditions:

1. p—1,p+1,g—1andq+1each have a prime factor of bitlength between 100 and 120.
2. pand q are different in at least one of the first 100 bits.

Condition 1 ensures resistance to the p— 1 and p + 1 factoring algorithms (due to Pollard [23]
and Williams [30]). Condition 2 ensures resistance to a factoring algorithm of Fermat (and
extended by Lehman [18]).°

We recall that the p— 1 and p + 1 factoring algorithms are “special-purpose” in that they are
most effective when p — 1 or p+ 1 have only small factors. After the discovery of the elliptic
curve factoring method (ECM) by Lenstra in 1985 [20], it became clear that the requirements
that p—1 and p + 1 each have a large factor are no longer necessary. This is because it is
more important to guard against the ECM which is effective whenever an elliptic curve defined
over [, can be found whose order is smooth—this includes the cases where the elliptic curve
has order p— 1 or p + 1. Moreover, Rivest and Silverman [25] (see also Silverman [28]) have
shown that the p— 1 and p+ 1 factoring algorithms are almost certainly to fail if the primes
p and q are sufficiently large and chosen at random. Clearly, condition 2 is also satisfied with
overwhelming probability if the primes p and g are randomly generated.

We conclude that while there is no security weakness if p and q are chosen to be strong primes,
there is also no reason to require that p and g be strong primes.

4.3 Security

BCCN ATTACK. Brier, Clavier, Coron and Naccache (BCCN) [5] presented the following
existential forgery attack on fixed padding RSA signature schemes. The attack improves earlier
attack of Girault and Misarsky [9] and Misarsky [21]. The survey article by Misarsky [22]

S Another condition sometimes imposed on p (and ) is that the large factor r of p— 1 must be so that r — 1 also
has a large prime factor. This condition maximizes resistance to a cyclic attack on the RSA encryption scheme.
Since this attack is not relevant to signature schemes, the condition on r is not required.
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provides a comprehensive overview on attacks known on fixed padding RSA signature schemes
prior to 1998.

Let the padding of an RSA message m be
P(m) =wm+a. (3)
For example, if the padded message is R||m||L where L is s bits in length and m is | bits in

length, then we can write P(m) = wm 4 a where w = 2Sand a = L + 25*'R.

Suppose now that messages are at most | bits in length, where | is an integer whose bitlength is
at most 1/3 that of n. The idea of the BCCN attack is to find messages m1, m2, mz, mg4 such that

P(m1)P(m2) = P(m3)P(m4) (mod n). 4

Then, after obtaining the signatures of my, m, and my, the adversary can compute the signature

of m3 as follows:

P(m1)?P(my)°
p(ma)d

Finding m1, m2, m3, my satisfying (4) is equivalent to solving

P(m3)d = mod n.

Rz=xy—tz (mod n) (5)

fort,x,y,zwhere R = a/w mod n, and where

m = X4t
my = y+t
m3 = t

Mg = X+y+z+t

are each at most | bits in length. The algorithm for finding t, X, y, z is the following:

1. Run the Euclidean algorithm with inputs R and n to find the continued fraction convergent
Pj/Qj to R/n satisfying Q; < n*/3 < Qj1.
2. Letz=|Qj| and u = |RQj —nPj|.
3. Select an arbitrary integer y with n1/3 <y < 2n/3 and ged(y, z) = 1.
4. Computet = —uz=1 mody.
5. Letx = (u+tz)/y.
Now, in the PKCS#1 v1.5 and ANSI X9.31 signature schemes, the padding function is of the

form
P(m) =wH(m)+a (6)
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for some w and a. Note here that (6) differs from (3) in that the hash value of m is used instead of
m itself. In the BCCN attack, the adversary does not have any control over the value of z (which
is determined from R and n). Moreover, after the adversary has chosen y, the values of t and x
are determined. Thus, the BCCN attack is doomed to fail for the PKCS#1 v1.5 and ANSI X9.31
signature schemes since the attacker would need to determine messages whose hash values are
determined from t,x,y, z (since the adversary has to present the actual messages to the signing
oracle, and not their hash values). Finding messages from hash values is infeasible assuming
that the hash function is one-way.

We could not see how to modify the BCCN attack to be effective on the PKCS#1 v1.5 and
ANSI X9.31 signature schemes.

LENSTRA-SHPARLINSKI ATTACK. Lenstra and Shparlinski [19] presented the following im-
provement to a selective forgery attack of Brier, Clavier, Coron and Naccache [5]. For a selective
forgery of ms, congruence (5) is rewritten as

(R+m3)z=xy (mod n). @)

Given mg, the adversary’s task is to find x, y, z satisfying (7) so that the corresponding m1, my, my
are at most | bits long. Lenstra and Shparlinski describe a method for finding such x,y, z. In this
method, the adversary has some freedom in the selection of x, y and z. However, there is not
enough freedom to allow solutions x, y and z to be chosen so that messages corresponding to
hash values my, my, mg4 are known. Thus, as with the BCCN attack, the adversary is still faced
with the insurmountable task of finding the messages corresponding to the derived hash values.

We could not see how to modify the Lenstra-Shparlinski attack to be effective on the PKCS#1v1.5
and ANSI X9.31 signature schemes.

5 1S0 9796 RSA Signature Schemeswith M essage Recovery

The 1SO 9796 standard covers signature schemes with message recovery. It has three parts:

1. 1SO 9796-1 [14]: RSA and Rabin schemes without a hash function.
2. 1SO 9796-2 [15]: RSA and Rabin schemes using a hash function.
3. 1SO 9796-3 [16]: Discrete logarithm based mechanisms.

This section studies the RSA signature schemes in ISO 9796-1 and I1SO 9706-2.

51 [1S0O 9796-1 RSA Signature Scheme

ISO 9796-1 [14] was first published in 1991. It is an RSA signature scheme with message
recovery. Plaintext messages can be at most half the bitlength of the modulus. Rationale for
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the redundancy function in ISO 9796-1 was provided in [13]. We will not present the details of
the redundancy function because, as described below, the 1SO 9796-1 signature scheme is now
considered to be completely broken.

Coron, Naccache and Stern [7] in 1999 presented an attack on a slight modification of the
ISO 9796-1 signature scheme. The attack is a refinement of the Desmedt-Odlyzko chosen-
message attack that exploits the special structure of padded messages. Shortly after, Copper-
smith, Halevi and Jutla [6] modified the attack to work on the (unmodified) ISO 9796-1 scheme.
In 2000, Grieu [12] introduced a simpler attack that can efficiently find 4 messages m1, mz, ms,
m4 such that

P(m1)P(my2) = P(m3)P(m4) (mod n) (8)

and can therefore construct the signature for any one of these messages given the signatures for
the other three messages. Girault and Misarsky [10] also showed that several countermeasures
proposed by Coppersmith, Halevi and Jutla [6] were not adequate for repairing the signature
scheme.

We conclude from this recent work that the 1SO 9796-1 signature scheme should be considered
to be insecure and should not be used in practice.

We note that the attacks of Coron, Naccache and Stern [7], Coppersmith, Halevi and Jutla [6],
and Grieu [12] do not appear to apply to the PKCS#1 v1.5 and ANSI X9.31 RSA signature
schemes.®

5.2 1S0 9796-2 RSA Signature Scheme

ISO 9796-2 specifies an RSA signature scheme with partial message recovery and one with full
message recovery.

We note that 1ISO 9796-2 is in the process of being revised (see [17]). The revision, currently
under development, is expected to contain three signature schemes, one of which will be the
same as the scheme specified the current edition [15]. All three schemes will be RSA-based,
but will be distinguished by the use of three different formatting mechanisms.

5.2.1 Partial Message Recovery

Let (n,e) be A’s RSA public key, and let d be A’s corresponding private key. H is an I-bit hash
function such as SHA-1. We assume that | and the bitlength k of n are multiples of 8, as is the
bitlength of the message m.

6Coron, Naccache and Stern [7] observe that their attack does apply to the PKCS#1 v1.5 and ANSI X9.31
signature schemes if the RSA modulus is of the special form n= 2+ ¢ where c is small. However since such RSA
moduli are not used in practice, the attack is not effective in practice.
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SIGNATURE GENERATION. To sign a message m, A does the following:

[

. Write m = m__|| mgr where m__ has bitlength k — I — 16.

N

. Compute h = H(m).

w

. Form the following octet string M of length k bits:
6A | m_| h|BC.

SN

. Use the private key d to compute s = M9 mod n.

(62}

. Send the signature s and mg to B.

SIGNATURE VERIFICATION. The verifier B does the following:

[

. Obtain an authentic copy of A’s public key (n,e).

N

. Compute M’ = s® mod n and parse M’ as follows:
M’ = XX | m||h|YY,
where ‘XX and ‘YY"’ are hexadecimal strings of length 2.
3. Verify that XX = 6A and YY = BC. If not, then reject the signature.
4. Compute h=H(me||mg).
5. If h #£h' then reject the signature.
Else, accept m = m__|| mg as the message signed by A.

SECURITY. Coron, Naccache and Stern (CNS) [7] observed that the Desmedt-Odlyzko multi-
plicative attack can be adapted to attack the 1SO 9796-2 signature scheme with partial message
recovery. In the following, we use bit strings and hexadecimal strings to represent integers.

Denote the padded message m by p(m); that is,
u(m) = 6A [ m_[| H(m) ||BC.
Dividing the integer (6A + 1)2k by n yields a quotient q and a remainder r satisfying
(6A+1)2=qn+r, wherer < n < 2K,

Now, let
n' =gn = (6A)2“+ (2" —r) = 6A|InL || nk,

where n’ has bitlength k4 7, n{ has bitlength k — 1 — 16, and ng has bitlength | + 16. Letting
mL = n{, we see that

T(m) = an —p(m)2° = ng — (H(m) || BCOO) (9)

has bitlength at most | + 16. The adversary, whose goal is to forge A’s signature s on a variant
m’ of a message m = n| || mg (for any mg of the adversary’s choice), does the following:



5

ISO 9796 RSA Signature Schemes with Message Recovery

Page 13

1. Selecta smoothness bound B = pt, where p; denotes the i

ith

T(mj)=qgn— er 1<i<t+1,

where m;j = n{ || mgi, and the t + 1 exponent vectors
Vi = (Vig, Vi2, ..., Vit,Vit+1) = (zi1 — 8,Zi2, . . ., Zit, 1)

are linearly independent over Ze. Note that by (9) we have

t+1
H(m;) = — ﬂp] (mod n) forl1<i<t+41.

3. Obtain the signatures s; of the m;: sj = u(m;)% mod n.
4. Select variants mg of mg until T(m’) is B-smooth:

T(m') =an—p |'|p,,

where m’ = n{ || mg. Setw = (21— 8,22, ...,z,1).

. Solve the linear system of equations

CiVi+CoVo+ -+ CtypaVigp1 =W

forcy,co,...,Ct1 € Ze.

. Now,

W =C1V1+CoVo+ - -+ Ciy1Vir1+€U

over the integers. Hence

t41
u(m') = p(ma)tp(mz) %2 - - p(mgyq) %+ (ﬁp ) (mod n).

Raising both sides to the power d and reducing modulo n gives

P
— 1 +1
s=s;'s5: st+1|!p] (mod n).

Thus s can be computed according to formula (10).

prime number. Let piy1=—1.
. Select arbitrary mg 1,MRr 2, . . ., MRr¢41 until the corresponding T values are B-smooth:

(10)
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ANALYSIS. The running time of this attack depends on the choice of the smoothness bound
B = pt. The optimum choice for B depends on the distribution of smooth integers of bitlength
| 4+ 16 (recall that the T (m;) have bitlength I 4+ 16), and not on the parameter k (the bitlength of
the modulus n). If | = 160 (the bitlength of SHA-1 outputs), then the optimum choice of t is
approximately 22°. In this case, the adversary needs to query the signing oracle approximately
220 times, and the expected running time (hash function evaluations + smoothness testing) is
about 251—it is important to note that this running time is independent of the bitlength of the
RSA modulus. The running time of 251 is less than the expected running time of the number
field sieve to factor 1024-bit RSA moduli (about 280 steps). Thus the CNS attack is effective
in that it is faster than the best known factoring algorithm. On the other hand, the attack still
requires the signatures of 22° chosen-messages, so it can be argued that the attack is not practical
in many scenarios.

We conclude that the CNS attack is a concern for the 1SO 9796-2 signature scheme with partial
message recovery in environments where the attacker is capable of obtaining the signatures of a
significant number (e.g., one million) of chosen messages. In environments where the attacker
is not capable of obtaining these signatures, the CNS attack is not a concern.

5.2.2 Full Message Recovery

Let (n,e) be A’s RSA public key, and let d be A’s corresponding private key. H is an I-bit hash
function. 1SO 9796-2 recommends that | € [64,80]. We assume that | and the bitlength k of n
are multiples of 8, and that the message m has bitlength k — | — 16.

SIGNATURE GENERATION. To sign a message m, A does the following:

1. Compute h = H(m).
2. Form the following octet string M of length k bits:

4A|m|/h| BC.

3. Use the private key d to compute s = M9 mod n.
4. Send the signature s to B.

SIGNATURE VERIFICATION. The verifier B does the following:

1. Obtain an authentic copy of A’s public key (n,e).
2. Compute M’ = s® mod n and parse M’ as follows:

M’ = XX || H ]| VY,

where ‘XX and ‘YY"’ are hexadecimal strings of length 2.
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3. Verify that XX =4Aand YY = BC. If not, then reject the signature.
4. Compute h=H(m).

5. If h#£h' then reject the signature.
Else, accept m as the message signed by A.

SECURITY. Coron, Naccache and Stern (CNS) [7] observed that the Desmedt-Odlyzko multi-
plicative attack can also be adapted to the 1SO 9796-2 RSA signature with full message recov-
ery. The attack is similar to the one described in Section 5.2.1. Here again, we use bitstrings
and hexadecimal strings to represent integers.

We write a plaintext message m as m = my_|| mg where mg has bitlength x. Here, x is a parameter
to be chosen later. Denote the padded message m by p(m); that is,

u(m) = 4A[lm|[H(m) | BC.
Dividing the integer (4A + 1)2X by n yields a quotient and a remainder r satisfying
(4A+1)2%=qn+r, wherer < n < 2K,

Now, let
n' = an = (48)2° + (2~ r) = 4A||n | ni.

where n’ has bitlength k 4 7, ng has bitlength | + x+ 16, and n| has bitlength k — 1 —x — 9.
Letting m_ = n{, we see that

T(m) =gn—p(m)28 = nk — (mg || H(m) || BCOO) (11)

has bitlength at most | 4+ x+ 16. The adversary can now modify mg until T(m) is smooth. The
attack then proceeds as in the CNS attack described in Section 5.2.1.

ANALYSIS. The running time of this attack depends on the choice of x and the smoothness
bound B = p;. The optimum choice for B depends on the distribution of smooth integers of
bitlength I + x4 16 (recall that the T (m;) have bitlength | + x 4+ 16), and not on the parameter k
(the bitlength of the modulus n). For example, if | = 64, then x =32 and t ~ 21°, In this case, the
adversary needs to query the signing oracle approximately 21° times, and the expected running
time (hash function evaluations + smoothness testing) is about 24/—it is important to note that
this running time is independent of the bitlength of the RSA modulus. Similarly, if | = 80, then
x =34 and t ~ 217, In this case, the adversary needs to query the signing oracle approximately
217 times, and the expected running time (hash function evaluations + smoothness testing) is
about 2°%, These running times are significantly less than the expected running time of the
number field sieve to factor 1024-bit RSA moduli (about 2 steps). Thus the CNS attack is
effective in that it is faster than the best known factoring algorithm. On the other hand, the
attack still requires the signatures of about 21° chosen-messages, so it can be argued that the
attack is not practical in many scenarios.
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We conclude that the CNS attack is a concern for the 1SO 9796-2 signature scheme with full
message recovery in environments where the attacker is capable of obtaining the signatures of a
significant number (e.g., 50 thousand) of chosen messages. In environments where the attacker
is not capable of obtaining these signatures, the CNS attack is not a concern.

6 Conclusions

The recently published attacks on fixed-padding RSA signature schemes completely break the
ISO 9796-1 RSA signature scheme with message recovery. They also seriously threaten the
security of the ISO 9796-2 RSA signature schemes in environments where an adversary is able
to obtain the signatures of a significant number (e.g., one million) of chosen messages. For
these reasons, we recommend that the 1ISO 9796-1 and 1SO 9796-2 standards not be adopted by
CRYPTREC.

The attacks are not a threat to the practical security of schemes described in the ANSI X9.31
and PKCS#1 v1.5 standards. Nevertheless, the possibility of an effective attack being discov-
ered in the future still remains. It is strongly recommended that RSA signature schemes with
pseudorandom padding be used instead. The best candidate is the RSA PSS signature scheme
[3] which has been proven secure in the random oracle model.
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