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Abstract. This document is a review for CRYPTREC 2001 regarding
the ESIGN digital signature standard. In this report we make no progress
towards a better solution to the approximate e’th roots problem, but
we do introduce a new attack on the ESIGN standard. This (lattice)
attack is based on an attacker having some knowledge of the bits of
the ephemeral keys used while signing. Under suitable conditions this
can lead to recovery of the private key (namely the factorisation of n)
quickly, and thus should be taken very seriously. Similar attacks have
been shown for the digital signature algorithm (DSA), and they have
had a wide impact on practical implementations of cryptosystems. The
existence of this attack stresses the importance of using truly uniform
pseudorandom numbers, and the careful implementation of the ESIGN
standard. The attack does not apply to a correctly implemented version
of the standard.
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1 Introduction

In this report we assess the security of the ESIGN digital signature standard
as specified by [16-18]. The algorithm was designed to address the problem of
RSA signatures, namely the asymmetric computation times in signing (relatively
expensive) and verification (relatively cheap). In section 2 we sum up the scheme.

In the “standard model”, where the algorithm is correctly implemented, we can
find no weakness with the algorithm, i.e. no progress has been made on the e’th
root approximation problem for any e > 4. However it is arguably prudent for
a signature scheme to be secure against slightly stronger attacks models. In [8]
Howgrave-Graham and Smart examined the security of the digital signature
algorithm (DSA) assuming that an adversary has knowledge of some of the bits
of the ephemeral keys used in signing. Many practical instances of the DSA did,



and perhaps still do, leak such information, and so this is a realistic attack model.
As well as from poor implementation, this information may be leaked from side
channel attacks such as a timing or power analysis'. Much subsequent work
has been done on this topic, see [12,13,2], and so ESIGN is assessed under this
security model in section 4. Unfortunately (and rather remarkably) the situation
for ESIGN is exactly the same as for the DSA, i.e. the secret key can be leaked
quickly from this information. The existence of such a property in a signature
scheme may be considered a design flaw; at very least it means that implementors
must be careful.

In section 5 we sum up some other minor points to do with the standard, and
in section 6 we recap the main results of the review.

2 A summary of the ESIGN standard

Keygen For some security parameter k, pick two random primes, p and ¢, of
length k bits, and set n = p2q. If n does not have 3k bits then one should choose
different primes. Also pick some positive integer e > 8.

The ESIGN standard requires that k£ > 320 and e > 8. The suggested parameters
are k = 384 and e = 219 = 1024.

Signing In order to sign a message representative m of length k—1 bits (resulting
from a hash of the true message) one does the following steps:

Choose a random nonce r uniformly at random from Z,.

Set z = 2% m.

Set @ = z — r¢ mod n.

Let wop,w; be positive integers such that wopg — w1 = « for some wy < pg.
Set t = wo(er®=1)~! mod p.

Set s = r + tpq.

SOt =

After which one outputs the signature s of the message m.

Verification On input a signature s of length 3k bits and a message representative
m of length k — 1 bits one can verify that s is a signature of the message m by
performing the following steps:

1. Set t = s® mod n.
2. Check that the bits of ¢ in positions 2k ...3k — 1 agree with the bits of m,
and that the top bit of ¢ is zero. If so then set v = 1 else set v = 0.

After which one returns the verification bit v.

! Such attacks are less applicable to ESIGN since the random nonce has very little
impact on the computation time.



2.1 Proof of validity

The verification works simply because

s¢ = (r +tpqg)® mod n
=7r°+etpgr™! + ... mod n

=z 4+ w;

and since w1 < pgq it cannot effect the top k bits of z, since the bottom 2k bits
of z are all zero.

3 Existing attacks

If an adversary manages to forge an ESIGN signature on a message m then
clearly he has solved the approximate e’th root problem for the specific message
m, i.e. he has found an s for which the top k bits of s mod n are equal to 0||m.
Assuming this problem is hard on the average case implies that the attacker can
not perform such an action given merely m and the public parameters.

In section 3.1 we recap previous results which show that the e’th root problem
is not hard for the cases e = 2 and e = 3, so these parameters should not be
allowed.

In section 3.2 we also consider the problem of directly retrieving the private key
(p and ¢) from the public parameter n. Of course this knowledge immediately
implies that one can sign in the standard way, and thus forge any message one
wants.

Both of the above attacks do not assume that useful information can be obtained
from a set of signature transcripts, indeed in section 3.3 we explain why it is
very likely that transcripts leak no information.

Finally in section 3.4 we examine whether any of these attacks may be improved
on in the near future.

3.1 The casesof e =2 and e = 3

As noted in [6] the e’th root problem is actually easy for the cases e = 2 and
e = 3. The reason for this is that we can simply disregard the modulo n part, and
work with real numbers. To be more specific suppose we wish to forge a signtaure
on a message m then let z = 22*m and let s,d be such that s = Zl/e 4+ d, for
some real number d, |d| < 1/2. In this case

5= (2 +d) =z +edzt"V 4 ..



When e = 2 this means that s¢ — z is only about /n, and thus approximately
the top half of the bits of s¢ and z are the same, i.e. s is a valid siganture for
the message m. For the case e = 3 the size of s° — z is about 1.5n>/3, so now the
top 1/3 of the bits of z and s¢ will almost match but there may be some non-
matching toward the lesser significant bits. By exhaustively testing s’ = s+ for
some small z, one may find a signature for the message m with non-negligible
probability of success.

3.2 Factoring n = p3q

As discussed in [16], the best current way to factor a number of the form n = p?q
which has > 960 bits, is to apply the number field sieve (NFS), i.e. the same
technique as for other integers of a similar size (e.g. an RSA modulus). For an
integer of this size the running time of this algorithm is currently infeasible,
although just as with RSA it may well be prudent to increase the recommeded
bit size of n to allow for improvements in factoring integers, e.g. n with 6 x 384 =
2304 may be recommended for a higher degree of security.

Another alternative for factoring n is to use the standard elliptic curve factoring
method (ECM), or slight modifications thereof for n = p*q. However in both
these cases finding factors whose bit size is atleast 320 bits is beyond the reach
of feasibility.

A third possibility is to use lattice techniques to factor n = p"q (see [5]), however
for 7 = 2 this technique is inferior to both the NFS and ECM.

3.3 Transcript analysis

In this section we examine what information a transcript analysis of ESIGN
signatures leaks, i.e. we assume we are given many pairs (m;, s;) such that the
bits in positions 2k ...3k —1 of s{ are equal to the bits of m;, and the top bit s
is 0. The m; correspond to the message digests resulting from a hash function,
and this hash function is modelled as a random oracle [1].

If we do model the hash function as a random oracle, then such a transcript
clearly leaks no useful information. This follows because an attacker with no
private information can simulate such a transcript by simply choosing random
s; uniformly from Z,,, and checking whether the top bit of s{ mod n is 0. If so
(which will happen half of the time on average), then the attacker can set the
bits of m; to be equal to the bits of s§ mod n in positions 2k ...3k — 1.

Such (s;, m;) will be indistinguishable from random, i.e. uniformly distributed
in the space of valid transcripts.



3.4 On extending these attacks

It is clear that an adversary that can break the e’th root problem can forge
signatures, and in section 3.1 we showed that this was is possible for e = 2 and
e = 3. However for all e > 4 the simple trick of ignoring the modulo n part, and
finding the closest integer to the e’th root over the reals will not work: the error
will simply be too large.

A similar situation holds for low exponent RSA: when there is no wrapping
modulo n, an encrypted (small) message m can be easily recovered by taking
e’th roots over the integers, however when there is significant wrapping modulo
n (i.e. for general low exponent RSA, when m is no longer small) the problem
appears to be intractable [3].

With regards to ESIGN and in the presence of significant wrapping modulo n,
as is the case for any e > 4, it appears that this is a suitably hard problem on
which to base the security of the signature scheme.

The recommendation that e > 8 for practical implementations seems reasonable.

Further lattice work has been done in [7,15] but these techniques, while inter-
esting, do not shed any new light on how to attack ESIGN for e > 4.

Improvements to integer factorisation (and thus key recovery for ESIGN) are
always happening. It is this reviewers opinion that two levels of security should
be recommended, one with k& = 384 and the other with k¥ = 768. The latter
should be immune to progress in integer factorisation for a substantial amount
of time; see [10] for realistic estimates.

4 The weakness in the ephemeral keys

ESIGN signatures are of the form s = r 4 tpq for some integers r < pq and t < p.
In this section we assume that we have some information about the bits of the
ephemeral key r. Such a situation might come from the following sources:

1. the use of a weak pseudorandom number,
2. probing attacks,
3. a poor implementation of ESIGN.

Since ESIGN uses SHA-1 as the pseudorandom number generator (for which
no significant weaknesses are know) source 1 is not really applicable. Source 2
is certainly a realistic attack, but is more dependent on the instantiation of
ESIGN in hardware, so should probably be left to a later stage. Source 3 is
also dependent on the implementation of ESIGN, this time in software, however
from observations made with the practical implementations of the DSA it is
very important to stress to implementors, even at the standards stage, that r



cannot be chosen to have any bias. When the range of a random nonce does not
end on a power of 2 (as in the case of ESIGN), implementations often simply set
the top bit to 0 to ensure r < pq. Such efficiency gains do introduce biases to r.

It is interesting to note that in ESIGN the random nonce r has only a very
marginal impact on the computation time of signing.

If we now assume that we know [ integers s; of the form
s; =1+ 1ipq (1)

for which r; is a little less than pg we will describe a technique to recover these
;.

Clearly equation 1 implies that ps; = r;p + t;n which suggest building the fol-
lowing lattice

D sy sy...58

where D ~ n?/3.

This lattice was first studied by Boneh and Venkatesan in [4], in which they
examined a general problem known as the hidden number problem, and its ap-
plication to proving the hardness of the bits of the Diffie-Helman secret.

The applicability of this lattice to attacking signature schemes was first noticed
by Howgrave-Graham and Smart in [8], and since then much work has been done
on extending the scheme; see [12,13,2].

To quickly summarise the attack note that by the creation of L we know that the
vector L = (pD, pri,pra, ..., pr;) is in the lattice, where x = (p, —t1, —t2, ..., —t;).
This has norm approximately pR where R is a bound on the size of the r;. If this
is significantly below the smallest vector anticipated in a lattice of determinant
Dn!, then one may use lattice reduction techniques such as [11] to recover the
small vector, and hence determine the secret key p (which is the first entry of

The results in [13] are the strongest in a provable sense. Also in practice they
show that when only the top 3 bits of each of the r; is known then lattice
reduction techniques will recover the remaining bits.

It is worth mentioning that for any fixed number of signatures one may use the
techniques of [9] to achieve better bounds, but in general it is better to use the
lattice L and as many signatures as possible.



Very recently Bleichenbacher has developed non-lattice techniques [2] to recover
the r;. These techniques are certainly applicable when there is a bias correspond-
ing to knowing the top 1.5 bits of each of the r;. For smaller biases the size of
the computation time, and size of the required transcript increases significantly.

The mere existence of these kinds of attack mean that one should be very careful
leaking any information of this kind.

5 Other minor comments

Report [17] appears to be a little out of date. In the keygen algorithm specifica-
tion, it does not say to reject n for which the bit size is less than 3k, and it also
allows any e > 4 rather than e > 8.

Report [18] is generally well written and comprehensive. The only recommen-
dation for this report is that it be more specific about how to generate r €
{1,2,...,pq— 1} such that gcd(r,n) = 1 in the section on SP-ESIGN (assuming
the random data is obtained from SHA-1 say).

Report [16] is a good introduction to ESIGN, although the timing results at the
end use e = 32, which should really be replaced by the recommended values
of e = 1024. Future versions of this document should also include the dangers
inherent in mishandling the random number generation.

6 Conclusions

The major contribution of this report is to emphasize the importance of the
correct use of random numbers in ESIGN, where this point has not be made
in the past. It is the opinion of this reviewer that the underlying hard problem
behind ESIGN, namely calculating approximate e’th roots is indeed a suitably
hard problem on which to build a cryptosystem. Properly implemented, ESIGN
is an attractive and efficient signature scheme.

It is recommended that two levels of security are given to the users of ESIGN,
i.e. recommending k£ = 384 for standard security, and k& = 768 for a signature
scheme that will need to remain secure for a long time. This is to allow for
advancements in integer factorization.

The recommended choice of e = 219 = 1024 seems sensible.
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