The Digital Signature Algorithm (DSA)

Johannes Buchmann

December 15, 2001

Contents

1 Introduction 3
2 Description of DSA 4
2.1 Thealgorithm. 4
2.1.1 Key generation oL 4

2.1.2 Signature generation 5

2.1.3 Verification 5

2.2 Prime number generation 6
2.3 Random number generation 7
2.3.1 Generation of the secret keya. 7

23.2 Generationofk oL 8

3 Security 9
3.1 Security requirementso 9
3.1.1 Security proofs are reductions 9

3.1.2 Security of the secret key 11

3.1.3 Existential forgery 11

3.14 Nomessageattacks. 11

3.1.5 Adaptive chosen message attacks 11

3.1.6 Random oraclemodel 12

3.2 Choice of the parameters 13
321 Choiceofq i 13

3.2.2 The function Ly[u,v] 14

323 Choiceofp 15

324 Choiceofk 15

3.2.5 Prime number generation
3.2.6 Selection of the secret keyaand k&
3.3 Security proofs
3.4 Existential forgery L

3.5 Security reductions L.

SHA-1 hash function
41 Hashfunctions,
4.2 SHA-1 e

5 Conclusion
Bibliography

Subject index

18
18
19

20

21

23

Chapter 1

Introduction

The Digital Signature Algorithm (DSA) has been developed by the Accred-
ited Standards Committee on Financial Services (ASC X9) as part of standard
X9.30-1997: Public Key Cryptography Using Irreversible Algorithms for the
Financial Services Industry. That standard consists of two parts. Part 1: The
Digital Signature Algorithm (DSA) (Revised), and Part 2: The Secure Hash
Algorithm (SHA-1). The DSA defines a technique for generating and validating
digital signatures. This technique is supposed to provide data integrity and
non-repudiation of the origin and content of a digital message.

In this report I describe the current knowledge concerning the security of
the DSA. Chapter 2 describes the DSA. Chapter 3 discusses the security of the
DSA. In Chapter 4 I discuss the SHA-1 hash function. Chapter 5 gives a final
evaluation of the DSA.

Chapter 2

Description of DSA

2.1 The algorithm

The Digital Signature Algorithm (DSA) has been suggested and standardized
by the National Institute of Standards and Technology (NIST) of the U.S (see
[5], [17]). It is an efficient variant of the ElGamal signature scheme (see [3]
Section 11.4). The ElGamal signature scheme has several draw backs which the
DSA repairs.

1. Given todays security standards, an ElGamal Signature is of bit length at
least 2048. A DSA signature is of bit length 320.

2. Signature verification in the ElGamal scheme requires three modular expo-
nentiations with exponents of bit length at least 1024. Signature verifica-
tion in the DSA requires only two modular exponentiations with exponents
of bit length 160.

The idea for the reduction of the exponent size is taken from a signature
scheme of Schnorr [12] which is patented. There is a discussion whether the
Schnorr patent covers the DSA.

2.1.1 Key generation

A prime number ¢ is chosen (see Section 3.2.5) with
9159 < g < 2160,

That prime number ¢ has bit length 160. A prime number p is chosen with the
following properties:

o 2511464) <y < 9512464) for some j € {0, 1, ..., 8},

e the prime number ¢, which was chosen first, divides p — 1.

The bit length of p is between 512 and 1024. It is a multiple of 64. Therefore,
the binary expansion of p can be written sequence of 8 to 16 bitstrings of length
64. The condition ¢ | (p — 1) implies that the group (Z/pZ)* contains ¢ — 1
elements of order q. The primes p and ¢ can be system parameters for all users.

An z € {1,...,p— 1} is chosen with z(P~1/% £ 1 mod p and
g=2zP"Y/"mod p

is computed. Then the residue class g + pZ has order ¢ in the multiplicative
group (Z/pZ)* of residues mod p. It generates the uniquely determined sub-
group of order g of (Z/pZ)*. Finally, a random a (see Section 2.3) in the set
{0,1,2,...,q — 1} is chosen and

A=g¢%modp

is computed. The signer’s public key is (p,q, g, A). The signer’s private key is
a. Note that the residue class A + pZ is an element of the subgroup generated
by g + pZ. The order of this subgroup is approximately 2'°. Computing the
secret key a from A requires the solution of a discrete logarithm problem in
this subgroup. We will discuss the difficulty of this discrete logarithm problem
below.

2.1.2 Signature generation

The signer wants to sign the document z € {0,1}*. He uses the publicly known
hash function (see Chapter 4)

SHA-1: {0,1}* — {0, 1}'%°.

He chooses a random number k € {1,2,...,q — 1} (see section 2.3), computes
r = (¢* mod p) mod g, (2.1)

and sets
s = k' (SHA-1(z) + ar) mod q. (2.2)

Here, k~! is the inverse of k¥ modulo ¢. The signature of z is (r, s).

2.1.3 Verification

The verifier wants to verify the signature (r, s) of the document z. He obtains
the signer’s authentic public key (p,q, g, A). Then he verifies that

1<r<g-—land1<s<gqg-1. (2.3)

If this condition is violated, then the verifier rejects the signature. Otherwise,
he verifies that

r= ((g(s_lh(w)) mod g 4(rs~") mod 7) mod p) mod q. (2.4)

If the signature is constructed according to (2.1) and (2.2), then (2.4) holds. In
fact, the construction implies

(s~ h(z)) mod qA(rs_l) mod q s~ H(h(z)+ra)

g =y = ¢* mod p,

which implies (2.4).

2.2 Prime number generation

We describe the prime number generation for the DSA public key. The algorithm
for choosing the prime number ¢ is as follows.

1. Choose Seed € {0,1}*, g = |Seed| > 160.
2. Compute U = SHA-1(Seed ® SHA-1(Seed + 1) mod 29.

3. Set ¢ to the number that is obtained by setting the most and least signif-
icant bit of U to 1. Then 2159 < ¢ < 2160,

4. Use a probabilistic primality test with error probability at most 273 to
test whether ¢ is prime. The Miller-Rabin test (see [3] Chapter 6) is
mentioned as an example for such an algorithm.

5. If g is not prime, then go to step 1. Otherwise, output q.
Once q is found, the prime number p is constructed as follows.

1. Choose j € {0,1,...,8}. The prime p will satisfy 2¢~! < p < 2L with
L = 512 + 64j.

2. Divide L — 1 with remainder by 160, that is, find integers n,b such that
L—-1=160n+10b,0<b<160.

3. Set counter = 0, offset = 2.

4. For k=0,1,...,n let

Vi, = SHA-1((Seed + offset + k) mod 29).

5. Set

W=Vo+ Vi %20 4 4V, %2100=1) L (V. mod 2°) x 2160

and
X =Ww+2L1,

Then 0 < W < 2F~1 and
2l < X < 28
6. Set ¢ = X mod 2¢ and p = X — (¢ — 1). Then p = 1 mod 2g, that is, 2¢
divides p — 1.
7. If p < 2I71, then go to step 9.

8. Use a probabilistic primality test with error probability at most 273 to
test whether p is prime. The Miller-Rabin test (see [3] Chapter 6) is
mentioned as an example for such an algorithm. If p passes this test, then
go to step 11.

9. Set counter to counter + 1 and set offset to offset +n + 1.

10. If counter > 2'2 = 4096 generate a new prime number ¢ and start the
process of generating p again.

11. Save the value of Seed and the value of counter for use in certifying the
proper generation of p and ¢q. Those quantities have to be kept secret.

2.3 Random number generation

In the DSA, the secret key a € 1,...,q — 1 and for each signature an exponent
k € {1,...,q — 1} are pseudo-randomly generated. We describe that pseudo-
random number generation.

The pseudo-random number generator uses a one-way function
G :{0,1}'% x {0,1}* — {0,1}"¢° (2.5)

where 160 < b < 512. That function can be constructed using the SHA-1 hash
function or the DES encryption algorithm. In the first case, the value b is chosen
from {160,...,512}. In the second case, the value b is set to 160.

2.3.1 Generation of the secret key a
The generation of m secret keys a;, 0 < j < m — 1 works as follows.

1. Choose a secret XKEY € {0,1}°.

2. Let t be the hexadecimal number 67452301 EFCDAB89 98BADCFE 10325476
C3D2E1F0.

3. For j =0,1,...,m — 1 do the following:
(a) Optionally choose XSEED; € {0,1}*.

(b) Set XVAL = (XKEY + XSEED,) mod 2°.

(¢) Set a; = G(¢t,XVAL) mod q.

)

(d) Set XKEY = (1 + XKEY + a;) mod 2°.

2.3.2 Generation of k

The precomputation of m values k, k~!, r for m DSA-signatures works as
follows.
1. Choose a secret KKEY € {0, 1}.

2. Let t be the hexadecimal number EFCDAB89 98BADCFE 10325476 C3D2E1F0
67452301.

3. For j =0,1,...,m — 1 do the following:

Set k = G(t, KKEY) mod q.
Set k; ' = k="' mod ¢.

(a
(b
(c
(d

Set r; = (g* mod p) mod q.
Set KKEY = (1 + Kkey + k) mod 2°.

— — =

After m signatures are calculated using those values for k£ and r the value ¢
is set to the SHA value of the mth message.

Chapter 3

Security

In this section, we discuss the security of the the DSA. We first explain the
state of the discussion concerning the security of signature schemes. Then we
specifically discuss the security of the DSA.

3.1 Security requirements

3.1.1 Security proofs are reductions

The security of all known digital signature schemes depends on the intractabil-
ity of certain computational problems in mathematics, specifically in number
theory. Examples are the integer factoring problem and the discrete logarithm
problem in an appropriate group. In the case of DSA, the group is a subgroup
of prime order in the multiplicative group of a finite prime field.

However, no provably hard computational problems are known which can
serve as the security basis of a digital signature scheme. Therefore, no rigorous
security proofs for signature schemes are known and there is little hope that
such proofs will be found in the future.

Todays security proofs are reductions. The goal of such a reduction is to show
that the ability of an attacker to mount a successful attack on a signature scheme
implies his ability of solving a basic computational problem in mathematics.
This is supposed to increase the trust in the security of a digital signature
system. The idea of this approach is the following.

When analyzing the security of a signature scheme it is hard to predict which
attacks are possible since the system may be very complex and may depend on
numerous parameters. Even, if the underlying basic computational problems
are intractable, some part of the signature scheme might be implemented in
such a way that an attack is possible. A famous example for such a situation is

the discovery of the possibility of an attack against the RSA encryption stan-
dard PKCS # 1 (see [2]). In this standard, an insecure padding scheme was
used, which compromised the security of the whole scheme, even though the
RSA encryption scheme is based on the intractable integer factoring problem.
However, if the security of the digital signature scheme can be reduced to the
difficulty of a well defined computational problem in mathematics, then, in or-
der to evaluate the security of the digital signature scheme, it is sufficient to
study the difficulty of the underlying problem. The difficulty of the underlying
mathematical problem can be studied thoroughly and, therefore, the level of
security of the signature scheme is easier to estimate.

Such a security reduction also solves another problem. It is possible that a
weakness of a digital signature scheme is discovered, for example, by a govern-
ment agency of some country. That agency may then try to keep this weakness
secret and take advantage of it. However, if the weakness of the signature scheme
implies that a basic computational problem is no longer intractable, then keep-
ing this weakness secret may be more difficult, since the solution of important
scientific problems can be expected to happen at the same time independently
in different places. Hence, reduction proofs make it less likely that a security
hole can be abused.

It is an important question what the computational problems are to which
the security of digital signature schemes should be reduced in order for the
scheme to be considered more secure. Clearly, breaking a digital signature
scheme in one of the ways explained below, can be considered to be a computa-
tional problem. In this sense, the security of any digital signature scheme can
be trivially reduced to the intractability of a computational problem, namely
to the problem of breaking the scheme. However, evaluating the computational
difficulty of this problem is very difficult since it is very complex and has many
parameters. This is even more true since breaking a digital signature scheme
is a so called interactive problem, that is, in that problem several parties are
involved: a signer, who knows his secret key, an attacker who does not know
that key but wants to generate valid signatures of the signer, and perhaps an
honest verifier. In the process of forging signatures the attacker can try to use
the help of the signer and the verifier(see Section 3.1.5).

To make the security level of a digital signature scheme easy to evaluate, it
is desirable to reduce its security to easy to specify non-interactive computa-
tional problems. An example is the factoring problem for RSA-modules: Given
an integer n which is the product of two large primes p and ¢, find those fac-
tors p and ¢g. It would be optimal to reduce the security of a digital signature
scheme to problems which are of mathematical interest independently of their
cryptographic applications. Then, the difficulty of those problems would be
studied also outside the crypto community and would therefore be easier to
evaluate. However, digital signature schemes whose security can be reduced to
such problems seem not to be known. In the known reductions, the compu-
tational problems depend to a certain extent on the specific digital signature

10

scheme whose security is reduced to them. In my opinion, the less the com-
putational problems depend on the digital signature schemes the stronger the
security proof by reduction is.

3.1.2 Security of the secret key

A minimum requirement for secure digital signature schemes is the security of
the secret key. An attacker has access to the public key of the signer. In a
secure digital signature scheme, the determination of the secret key from the
public key must be infeasible.

3.1.3 Existential forgery

Suppose that the problem of computing the secret key from the public key is
intractable. This does not necessarily mean that the digital signature scheme
is secure. It may still be possible that an attacker is able to generate valid
signatures without the knowledge of the secret key.

In an existential forgery the attacker produces such a signature. In such a
forgery, the attacker is not required to have control over the document which is
signed. The only requirement is, that the result of an existential forgery a new
signature of some document which has been produced without the knowledge
of the secret key.

3.1.4 No message attacks

A no message attack or a passive attack is an existential forgery in which the
attacker only knows the public key of the signer and has no access to further
information such as valid signatures of other documents. A digital signature
scheme is considered to be secure against no message attacks, if the possibility
of such an attack implies the ability of solving a computational problem which
is considered to be intractable.

3.1.5 Adaptive chosen message attacks

I explain the strongest security notion known for digital signature schemes: the
security against existential forgery using an adaptive chosen message attack.

In an adaptive chosen message attack the adversary knows the public signa-
ture key of the signer and obtains valid signatures of a sequence of messages of
his choice. The messages in the sequence may depend on signatures of previous
messages. The goal of the adversary is an ezistential forgery, i.e. he wants to
produce a new signature which has not been generated by the legitimate signer.
In particular, the signature is not in the sequence of messages whose signatures

11

the attacker has obtained. But the newly signed message is not necessarily a
message of the attackers choice.

One practical application of this notion is as follows. Suppose that a sig-
nature scheme is used in a challenge response identification. Then the verifier
generates challenges which the prover is supposed to sign, thereby proving his
identity. Those challenges can be generated as a sequence of adaptive chosen
messages. If an adaptive chosen message attack makes existential forgery possi-
ble, then the verifier is able to forge valid signatures without knowing the secret
key. The use of signature schemes in challenge response identification is quite
common.

I explain a method for proving security against chosen message attacks more
precisely. In a chosen message attack the attacker can generate a sequence of
pairs (message, signature). A message in that sequence may depend on the
previous pairs. The signature generation algorithm is probabilistic. Therefore,
the signatures are generated according to some probability distribution. The
signature scheme is considered secure against a chosen message attack if it is
secure against no message attacks and if without using the secret key it is
possible to generate a sequence which is algorithmically indistinguishable (see
[1]) from the sequence which is generated using the signature algorithm. The
idea of this concept is the following. If an existential forgery is possible using
an adaptively chosen sequence of pairs (message, signature), then an existential
forgery is possible using the algorithmically indistinguishable simulation of such
a sequence. This latter existential forgery is a no message attack since the
signing algorithm is not used. However, the digital signature scheme is known
to be secure against no message attacks. Therefore, an adaptive chosen message
attack is impossible.

It is common belief that security against adaptive chosen message attacks
is the strongest possible security notion for digital signature schemes. In other
words, no attack against a digital signature scheme is known which cannot be
modeled as an adaptive chosen message attack. The role of this security notion
is somewhat similar to the role of the model of a Turing machine in the theory
of computation. No computing device is known which cannot be modeled as a
Turing machine. However, no proof is known that no stronger computing model
exists. Likewise, no proof is known that the security against adaptive chosen
message attacks is the strongest possible security notion.

In my opinion, if a signature scheme is proven secure against adaptive cho-
sen message attacks, then it can be considered secure in the strongest sense.
However, there are no such proofs but only reductions (see Section 3.1.1).

3.1.6 Random oracle model
Security proofs for digital signature schemes are difficult since a digital signature

scheme consists of many components and their interaction may be complicated.
An important ingredient of most signature schemes are cryptographically secure

12

hash functions. The hash functions map very long messages to short strings of
fixed length. The security of hash functions is discussed in Section 4.1. There I
explain that no provably secure cryptographic hash functions are known.

If the security of a signature scheme is analyzed in the random oracle model
(see [9], [4]), then the concrete hash function which is used in the digital sig-
nature scheme, is replaced by a so called random oracle. A random oracle can
be viewed as a black box which contains a random function which maps long
strings to short strings of fixed length. Nothing is known about this function,
but it can be evaluated by making an explicit query. A typical proof of security
against passive attacks in the random oracle model works as follows. If it is
possible to come up with a forged signature for a document using one random
oracle then such a forgery is also possible with another random oracle, resulting
in another falsified signature (forking lemma, see [9]). The two valid signatures
of the same document can then be used to solve an underlying mathematical
problem.

Does a security proof in the random oracle imply the security of the real
digital signature scheme in which a concrete hash function is used? Such an
implication cannot be proved today. However, assuming that the concrete hash
function behaves like a random oracle, a security proof in the random oracle
model makes the security of the real scheme more plausible. On the other hand,
there exist insecure signature schemes that can be proved secure in the random
oracle model (see [4]). Those schemes look fairly artificial. Nevertheless, their
existence raises the question what security proofs in the random oracle model
really prove.

In my opinion, security proofs in the random oracle cannot prove the security
of digital signature schemes but they make their security more plausible.

3.2 Choice of the parameters

3.2.1 Choice of ¢

The secret DSA key is a discrete logarithm in the subgroup of (Z /pZ)* of order
g and so is the secret k in each signature. The most efficient conventional
algorithms, that become more efficient as ¢ becomes smaller, for solving this
problems are the Shanks baby-step giantstep algorithm [13] and the Pollard rho
algorithm [10] and their variants. The run time of those algorithms is of order
q'72.

If quantum computers can be built, then any discrete logarithm problem in
(Z /pZ)* can be solved in polynomial time (see Shor [14]) and DSA is insecure.

Lenstra and Verheul [7], assuming technological and algorithmic progress,
recommend secure sizes of ¢ as a function of time. This is shown in Table 3.1.

In the DSA, the prime number ¢ is of fixed bit length 160. Given the pre-

13

Year | Bit length of ¢
2002 127
2010 138
2020 151
2030 165
2040 179
2050 193

Table 3.1: Secure size of ¢

dictions of Lenstra and Verheul [7], the DSA will be insecure by 2030. However,
it is possible to change the specification of the DSA accordingly. This means
changing the size of the prime number ¢ and the output size of SHA-1.

3.2.2 The function L,[u,v]

The most efficient algorithm for solving the general DL problem in (Z/pZ)* is
the Number Field Sieve (see Section 3.2.3) To estimate the running time and
storage requirement of the Number Field Sieve the function

Lz[u,v] — ev(log z)" (loglog z)1~
is used, where z,u,v are positive real numbers. I explain the meaning of this
function. We have

L,[0,v] = ev(log2) (loglog2)" _ (log x)® (3.1)

and
Lw[l, 'U] — ev(log z'(loglog z)° —ev logw‘ (32)

Let x be a positive integer which is the input for an algorithm. In the context
of this evaluation, z is the prime number p.

If an algorithm has running time L,[0,v], then by (3.1) it is a polynomial
time algorithm. Its complexity is bounded by a polynomial in the size of the
input. The algorithm is considered efficient, although its real efficiency depends
on the degree v of the polynomial.

If the algorithm has running time L,[1,v], then by (3.2) it is exponential.
Its complexity is bounded by an exponential function in the length of the input.
The algorithm is considered inefficient.

If the algorithm has running time L,[u,v] with 0 < w < 1, then it is subez-
ponential. The algorithm is slower than polynomial but faster than exponential.
So the function Lg[u,v] can be viewed as a linear interpolation between poly-
nomial time and exponential time.

14

3.2.3 Choice of p

The secret DSA key is a discrete logarithm in the subgroup of (Z /pZ)* of order
q and so is the secret k in each signature. This problem can also be attacked by
discrete logarithm algorithms in (Z /pZ)*. The fastest general discrete logarithm
algorithm in (Z /pZ)* is the Number Field Sieve (NFS) which has a conjectured
running time of L,[1/3,C + o(1)] with C' = (64/9)'/% = 1.9229... (see [11]). For
special primes p, for example for p = r™ + a, where r and a are small and n is
large, we have C' = 1.5262... or even less (SNFS).

The current record computation with the SNFS is the solution of the Mc-
Curley challenge problem [8] to compute the discrete logarithm modulo a prime
of 129 decimal digits by Denny and Weber [16]. The prime involved was of a
special form so that the special number field sieve could be applied.

The possibility of applying the special number field sieve must be avoided.
In the DSA this is done by choosing the prime p randomly. Then the probability
for p to be of a form that makes the Special Number Field Sieve applicable is
negligible.

The current record for the general NFS is the computation of discrete log-
arithms modulo a 120 digits prime. This was done in 10 weeks, on a unique
525MHz quadri-processors Digital Alpha Server 8400 computer by Joux and
Lercier [6].

Lenstra and Verheul [7] suggest field sizes for secure crypto systems as a
function of time. This is shown in Table 3.2.

Year | Field size
2002 1028
2010 1369
2020 1881
2030 2493
2040 3214
2050 4047

Table 3.2: Secure cryptographic field sizes

Given those predictions, the current maximal field size in the DSA appears
not to be sufficient. However, it is easily possible to change the specification of
the DSA accordingly.

3.2.4 Choice of k

A new k has to be chosen for each signature. Otherwise, the secret key a can
be determined by solving a linear system. We show how this works.

Suppose that the signatures s; and ss of the documents x; and z» are

15

generated with the same k. Then the number » = (g* mod p) mod q is the same
for both signatures. Therefore,

51 — 89 = k7 (SHA-1(z;) — SHA-1(z3)) mod q.

From this congruence, k can be determined if h(z1) — h(z2) is invertible modulo
q. From k, s1,7,SHA-1(z1), the secret key a can be determined since

s1 =k '(SHA-1(z1) — ar) mod q

and therefore
a=r"'(SHA-1(z;) — ks;) mod q.

3.2.5 Prime number generation

The prime number generation in the DSA is described in Section 2.2. Basically,
it works as follows. Pseudo-random 160-bit numbers are generated until a prob-
able prime ¢ is found. Next, pseudo-random L-bit numbers p are computed
with p = 1 mod ¢ until a probable prime is found. The pseudo-random number
generator uses a secret seed and the SHA-1 hash function. The probabilistic
primality test is required to have error probability at most 278%. The standard
recommends the use of the Miller-Rabin test (see [3] Chapter 6). That test
has provably the required property. The security of the pseudo-random number
generator depends on the secrecy of the seed and the properties of SHA-1. In
contrast to the primality test, no proof is known for the security of the pseudo-
random number generator. In the next section we discuss the pseudo-random
number generator.

3.2.6 Selection of the secret key a and &

The secret key a and the secret numbers k are generated using the pseudo-
random number generators described in Section 2.3.

The pseudo-random number generator generates 160-Bit random numbers
using the one-way function G. The function G can be constructed using DES
or SHA-1. This appears to be cryptographically secure.

Those 160-bit numbers are used to generate uniformly distributed pseudo-
random numbers in Z, = {0, ...,¢ — 1}. In the method described in FIPS PUB
186-2, Appendix 3 this is not satisfied. The values in {0, ...,21%0 — ¢ — 1} are
selected twice as often as the values in {2'%° — ¢,...,q — 1}. Daniel Bleichen-
bacher has found an attack which uses this weakness (see http://www.lucent.
com/press/0201/010205.bla.html). His attack uses 222 known signatures.
The details of the attack have not appeared yet. NIST has published the NIST-
Change Notice (October 5 2001) (see http://csrc.nist.gov/publications/
fips/fips186-2/fips186-2-changel.pdf). There, the following modifica-
tion is suggested. Two numbers z; = G(t,KVAL;) and 22 = G(t,KVAL,) are

16

generated and the random exponent k = (z1 * 2150 + 25)(modq) is used. This
yields a very good approximate equidistribution.

3.3 Security proofs

No security proofs are known for the DSA. However, in the random oracle model,
the security of a modification of the ElGamal signature scheme, from which the
DSA is derived, can be reduced to the difficulty of computing discrete logarithms
in (Z /pZ)* (see [9]). In this modification the hash value is replaced by the hash
value h = h(z||r) of the document z concatenated with the commitment r.
Also, the commitment r is not reduced mod g and the verification congruence
is

r® = g" A" mod p. (3.3)

This proof may be seen as a weak indication of the security of the DSA.

3.4 Existential forgery

We discuss the possibility of an existential forgery. Suppose an attacker wants
to generate a document z and a valid signature (r, s) on that document.

A first possibility is to use a signature (r,s) on a different document z' and
to find an z such that SHA-1(z) = SHA-1(z'). Given the current knowledge
concerning the hash function SHA-1 this appears to be infeasible.

A second possibility is to find x, h,r,s such that the verification equation
(3.3) holds. If in the DSA the challenge r is not reduced mod ¢ and the verifica-
tion congruence (3.3) is used, then we have the following. For fixed z,r, h this
is a discrete logarithm problem in (Z/pZ)*. For fixed h,r,s this is a discrete
logarithm problem in (Z/pZ)*. Given current knowledge, those DL problems
appear to be intractable.

However, it is unknown whether there is a method for simultaneously con-
structing z, h, r, s.

3.5 Security reductions

No security reductions for the DSA are known, not even in the random oracle
model. However, Pointcheval and Stern [9] prove that an ElGamal-variant and
the Schnorr signature scheme are secure in the random oracle model. The DSA
is derived from the ElGamal and the Schnorr scheme. Therefore, there may
be variants of the DSA for which there are security reductions. However, it is
unclear, what this means for the security of DSA.

17

Chapter 4

SHA-1 hash function

4.1 Hash functions

In signature schemes, hash functions are used to map long documents to short bit
strings of fixed length that are actually signed. A collision of a hash function is
a pair of different documents which are mapped to the same hash value. A hash
function is called collision resistant if finding a collision of that hash function
is intractable.

In signature schemes that sign hash values, the used hash functions must
be collision resistant. Otherwise, if a collision (d,d’) is found then the two
documents d and d' have the same signature. If an attacker is able to obtain
a valid signature of d, then he has also a signature for d’'. For example, if the
signer signs d in a challenge-response authentication, then he has also signed
the other document d’, possibly without knowing it. Collision resistant hash
function are one-way functions. This means, that computing an inverse image
for a given image is intractable. Therefore, in many cases, the use of collision
resistant hash functions prevents existential forgeries since even if it is possible
to generate a valid signature for a hash value it is impossible to find a document
with that hash value.

Using the birthday paradox (see [3]) a collision for a hash function whose
image has n elements can be found with probability > 1/2 by computing ap-
proximately y/n hash values. In view of the predictions in [7], the image of
the hash function should at least contain 2!%0 elements in order to prevent the
possibility of a birthday attack.

The birthday attack can be prevented if a keyed hash function is used. This
is a function which maps a bit string and a key from a predefined key space to
a hash value of fixed length. In the signing process, a random key is generated.
The signature algorithm signs the hash value of a document that is generated
by the hash function which is parameterized by the chosen key. The key is part

18

of the signature. It is also used in the verification process. In order for digital
signature algorithm to be secure, the keyed hash function must be a universal
one-way hash function (UOWF). This means that given a hash value and a key
it is intractable to find a document such that the value of the hash function
parameterized by the given key is the given hash value. No provably universal
one-way hash function is known. However, there are constructions that use
compression functions such as SHA-1 (see [15]) and are assumed to have the
universal one-way property.

4.2 SHA-1

The hash function used in the DSA is SHA-1 (see [15]). It hashes to 160-bit
hash values. The only known attack is the birthday attack. Given the current
algorithmic knowledge, SHA-1 will be collision resistant for the next 20 years.
However, there is no proof for the security of the DSA. Unexpected attacks may
be discovered in the future.

19

Chapter 5

Conclusion

The DSA is an efficient digital signature algorithm. Given current algorithmic
knowledge, the DSA appears to be secure for now.

However, when using the DSA several security issues have to be considered.

1. The intractability of the discrete logarithm problem in the subgroup of
order q of (Z/pZ)*, the collision resistance of the SHA-1 hash function,
and the indistinguishability of the pseudo-random number generator are
necessary conditions for the security of the DSA. However, it is unknown,
whether those assumptions are valid. Unexpected mathematical break-
throughs or quantum computers may make this assumption false.

2. There is no security proof for DSA nor is there a security reduction in
any of the security models that cryptographers in the theory community
have agreed on. So even if the underlying discrete logarithm problem and
the underlying hash function and pseudo-random number generator are
cryptographically secure, the DSA itself may still become insecure.

3. Given current algorithmic knowledge, the size of the security parameters
suggested in the DSA is not sufficient to guarantee the security of the DSA
for the next 20 years. A larger prime number p should be chosen. For
longer security periods, a larger prime number ¢ should be selected. This
implies changing the output length of the hash function .

I recommend using the DSA with larger primes in an environment where it
can easily be replaced by another signature scheme, if necessary.

20

Bibliography

[1] BELLARE, M., AND GOLDWASSER, S. Lecture notes on cryptography.
www-cse.ucsd.edu/usres/mihir.

[2] BLEICHENBACHER, D. Chosen ciphertext attacks against protocols based
on the rsa encryption standard pkes # 1. In Advances in Cryptology -
Crypto ’98 (1998), pp. 1-12.

[3] BUCHMANN, J. Introduction to Cryptography. Springer-Verlag, New York,
2001.

[4] CaNETTI, R., GOLDREICH, O., AND HALEVI, S. The random oracle
methodology revisited. In 30th ACM Symp. on Theory of Computing
(STOC) (1998), pp. 209-218.

[5] FIPS 186-2, Digital Signature Standard (DSS). Federal Informa-
tion Processing Standards Publication 186-2, U.S. Department of Com-
merce/N.I.S.T., National Technical Information Service, Springfield, Vir-
ginia, 2000.

[6] Joux, A., AND LERCIER, R. Discrete logarithms in GF(p). Announcement
on the NMBRTHRY Mailing List, 17. April 2001.

[7] LENSTRA, A., AND E.R.VERHEUL. Selecting cryptographic key sizes, Oc-
tober 1999.

[8] McCuURLEY, K. The discrete logarithm problem. In Cryptography and
computational number theory, Proc. Symp. Apll. Math (1990), C. Pomer-
ance, Ed., vol. 42 of Amer. Math. Soc., pp. 49-74.

[9] POINTCHEVAL, D., AND STERN, J. Security arguments for digital signa-
tures and blind signatures. J. Cryptology 13 (2000), 361-396.

[10] PoLLARD, J. Kagaroos, monopoly and discrete logarithms. J. Cryptology
13 (2000), 437-447.

[11] SCHIROKAUER, O. Discrete logarithms and local units. Phil. Trans. R.
Soc. London A 345 (1993), 409-423.

21

[12] SCHNORR, C. Efficient signature generation by smart cards. In Advances
in Cryptology - CRYPTO 89 (1991), Lecture Notes in Computer Science,
Springer - Verlag, pp. 161-174.

[13] SHANKS, D. Class number, a theory of factorization and genera. In Proc.
Symp. Pure Math. 20 (1971), AMS, Providence, R.L., pp. 415-440.

[14] SHOR, P. W. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM J. Computing 26 (1997),
1484-1509.

[15] STANDARD, S. H. National Institute of Standars and Technology (NIST),
FIPS Publication 180-1, April 1995.

[16] WEBER, D., AND DENNY, T. The solution of mccurleys discrete logarithm
challenge. In Advances in Cryptology - Crypto 98 (1998), vol. 1462 of LNCS,
pp. 458-471.

[17] ANSI X9.30:1-1997, Public Key Cryptography for the Financial Services
Industry: Part 1: The Digital Signature Algorithm (DSA). Available from
the ANSI X9 Catalog, 1997.

22

Index

L,[u,v], 14
SHA-1, 5

adaptive chosen message attack, 11

challenge response, 12
collision, 18
collision resistant, 18

DSA, 3

ElGamal signature, 4
existential forgery, 11

hash function, 18
interactive problem, 10
keyed hash function, 18

no message attack, 11
non-interactive problem, 10

one-way function, 18
passive attack, 11

random oracle, 13

reduction, 9

run time
exponential, 14
polynomial, 14

Schnorr signature, 4
security proof, 9
security reduction, 9
SHA-1, 3
simulation, 12

universal one-way hash function, 19

