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Abstract

Draft FIPS PUB 202 [32] speci�es the Secure Hash Algorithm-3 (SHA-3)

family of functions. The SHA-3 functions are based on instances of the Keccak

algorithm that NIST selected as the winner of the SHA-3 cryptographic hash

algorithm competition. The SHA-3 family consists of four cryptographic hash

functions, SHA3-224, SHA3-256, SHA3-384, and SHA3-512, and two extendable-

output functions (XOFs), SHAKE128 and SHAKE256.

This evaluation report summarizes the cryptanalysis published during the

SHA-3 competition and afterwards on the Keccak algorithm.
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Chapter 1

Executive Summary

1.1 SHA-3 and Keccak

Keccak is the winner of the NIST SHA-3 competition. It is a family of func-

tions that can be used to generate arbitrary output length from an input of

variable size. Keccak uses a mode of operation called the sponge construction

(formally de�ned in [7]), which builds a function mapping variable-length input

to variable-length output using a �xed-length permutation and a padding rule.

The Keccak permutation works on a state of 1600 bits1 using a sequence of 24

rounds. Four instances of Keccak, with output lengths 224, 256, 384 and 512

bits, were submitted to the SHA-3 competition [9].

Draft FIPS PUB 202 [32] speci�es the actual SHA-3 family, containing 6

functions, all of which are directly based on Keccak instances (where the only

di�erence between the SHA-3 functions and the underlying Keccak instances is

the concatenation of a few bits to the message). The SHA-3 family contains 4

cryptographic hash functions, named according to their output length: SHA3-

224, SHA3-256, SHA3-384, and SHA3-512. These 4 hash functions are directly

based on the 4 Keccak instances that were submitted to the SHA-3 competition

(Keccak[448], Keccak[512], Keccak[768] and Keccak[1024], respectively).2

Draft FIPS PUB 202 also speci�es two extendable-output functions (XOFs),

SHAKE128 and SHAKE256. These functions use the Keccak family of sponge

functions to o�er additional �exibility, and in particular, can be de�ned with

an arbitrary output length d. However, the two XOFs are not based on the

4 Keccak instances that were submitted to the SHA-3 competition, but rather

on Keccak instances with di�erent parameters. In fact, each choice of XOF

1Keccak is also de�ned on smaller states, but these instances are not used for SHA-3, and
are out of the scope of this report.

2In this report, we name the Keccak instances according to Draft FIPS PUB 202, but note
that these instances were typically named Keccak-n in previous analysis, where n speci�es
the output length (e.g., Keccak[448] was previous named Keccak-224).
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(SHAKE128 or SHAKE256) and a value of d can be viewed as an instantiation

of a separate Keccak instance.

1.2 Security of SHA-3

1.2.1 Formal Security Claims

Standard applications of hash functions typically require core security proper-

ties of collision resistance, preimage resistance, and second preimage resistance.

Given a hash function H with an n-bit output, these core security properties

are de�ned below.

1. Collision resistance: It should be di�cult to �nd a pair of di�erent

messages m1 and m2 such that H(m1) = H(m2).

2. Preimage resistance: Given an arbitrary n-bit value x, it should be

di�cult to �nd any message m such that H(m) = x.

3. Second preimage resistance: Given message m1, it should be di�cult

to �nd any di�erent message m2 such that H(m1) = H(m2).

The security strengths of the 6 SHA-3 functions as claimed in Draft FIPS

PUB 202 are summarized in Table 1.1.

Function Output Size Collision Preimage Second Preimage

Resistance Resistance Resistance

SHA3-224 224 112 224 224

SHA3-256 256 128 256 256

SHA3-348 348 192 348 348

SHA3-512 512 256 512 512

SHAKE128 d min(d/2, 128) min(d, 128) min(d, 128)

SHAKE256 d min(d/2, 256) min(d, 256) min(d, 256)

Table 1.1: Security Strengths of SHA-3 Functions (in bits)

1.2.2 Security Analysis

When analyzing the security of a hash function, one typically starts by consid-

ering its mode of operation, namely, the sponge construction in case of SHA-3.

The sponge construction provides formal proofs on security for any hash func-

tion [4], assuming that its internal permutation has no apparent weakness (it

is �ideal�). In particular, these proofs of security apply to all Keccak instances,

assuming that Keccak's internal permutation is ideal. Since the six SHA-3
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functions are based on instances of Keccak, the security proofs of [4] apply to

the SHA-3 functions as well, namely, the functions provide the security level

claimed in Table 1.1, assuming that Keccak's internal permutation is ideal. On

the other hand, there is no formal proof of security for Keccak's internal per-

mutation,3 and therefore attacks on Keccak (and on SHA-3) focus on trying to

�nd weaknesses in its permutation.

Cryptanalysis of SHA-3 is roughly divided into three types.

1. Type 1: Attacks on the core security properties of the hash function, as

given in Table 1.1. Most applications rely on core security properties, and

these are considered as the most important security properties of any hash

function.

2. Type 2: Distinguishers that �nd a property of the hash function which

distinguishes it from a random function (such as a bias in its output). Al-

though weaker than attacks of type 1, more general randomness properties

of hash functions are required by some applications, and it is important

to ensure that the hash function does not exhibit undesired properties in

general.

3. Type 3: Distinguishers that �nd a property of the internal permutation

of SHA-3 which distinguishes it from a random permutation. Since SHA-3

uses the internal permutation in a speci�c way (e.g., by restricting part

of the permutation's input), a distinguisher of type 3 does not necessar-

ily lead to a distinguisher on the hash function (of type 2) that can be

observed at the output. Excluding some exceptions, distinguishers of this

type have little in�uence on the security of the hash function in practice.

We note that the theoretical attack models for key-less hash functions are

generally not well-de�ned. This is especially true for cryptanalysis of types 2 and

3, as one needs to be careful with the de�nition of a �distinguisher�. However,

in this report we generally avoid these issues, focusing on the signi�cance of

published cryptanalysis to the security of the hash function in practice.

While this report considers all 3 types of cryptanalysis, we note that Draft

FIPS PUB 202 formalizes security claims for SHA-3 only against attacks of

type 1 (as summarized in Table 1.1). It should be further noted that there are

relations between the three types of cryptanalysis, and while the classi�cation

above helps to understand the impact of a given attack (or distinguisher), it is

also important to examine its internal details. For example, some di�erential

distinguishers of type 3 can be converted into collision attacks on type 1 when

combined with additional cryptanalytic techniques. This is discussed in more

detail in Chapter 2.

We stress that this report evaluates the security of the SHA-3 instances, but

does not deal with how to embed them into various applications.

3Keccak is not di�erent in this aspect from any modern hash function.

4



Attacks on Core Security Properties

Since there is no published attack that breaks the core security properties of

Keccak (or the properties of SHA-3, as speci�ed in Table 1.1), its cryptanal-

ysis focuses on weaker instances in which the number of permutation rounds

is reduced from the full 24. The security analysis of reduced-round variants

of iterated cryptosystems is common practice, where the aim is to study the

security margin of the cipher against dedicated attacks.

The largest number of rounds that can be attacked for the SHA-3 instances

according to published analysis are given in Table 1.2. Note that this table

only includes results on the 4 hash functions, but does not contain results on

the two XOFs, SHAKE128 and SHAKE256. Indeed, the Keccak instances that

correspond to the XOFs were not submitted to the SHA-3 competition, and

their speci�c parameters did not undergo direct public analysis.

The results presented in table 1.2 are subject to two remarks, which will be

further discussed in Chapter 2: �rst, the original cited results were obtained on

Keccak instances, rather than on the SHA-3 functions derived from them. How-

ever, as the only di�erence between the SHA-3 functions and the corresponding

Keccak instances is a small number of bits that are concatenated to the mes-

sage, the original attacks on round-reduced Keccak generally apply to SHA-3.

The second remark is that Table 1.2 does not include small optimizations of

exhaustive search (such as [3], which we consider as a distinguisher of type 2,

as described in Chapter 2).

Function Attack Type Number of Rounds Reference

Attacked

SHA3-224 Collision 4 [18, 20]

SHA3-224 (Second) Preimage 4 [28]

SHA3-256 Collision 5 [19]

SHA3-256 (Second) Preimage 4 [28]

SHA3-348 Collision 4 [19]

SHA3-348 (Second) Preimage 4 [28]

SHA3-512 Collision 3 [19]

SHA3-512 (Second) Preimage 4 [28]

Table 1.2: Number of Rounds that can be Attacked for SHA-3 Functions

Distinguishers on the Hash Function

General distinguishers on round-reduced SHA-3 can reach a few more rounds

compared to attacks on its core security properties. However, there is no pub-

lished distinguisher that can reach 10 rounds (or more) of any of the SHA-3

instances.
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Distinguishers on the Permutation

Since the publication of Keccak (SHA-3), several distinguishers on (round-

reduced) variants of its permutation were proposed. However, it is rather di�-

cult to compare the various types of distinguishers on the permutation, as they

di�er in complexities and the potential e�ect on the security of the hash func-

tion. For example, some di�erential distinguishers for a small number of rounds

(such as ones published in [22, 31]) have low complexities, and were shown to

yield actual collision attacks on round-reduced SHA-3 in [18, 20]. On the other

hand, zero-sum distinguishers [2], can potentially reach a very large number of

rounds, but these have very high complexity, and it is highly unlikely that they

would have any e�ect on the security of the hash function, as it is not clear how

to exploit them to detect any unexpected property of the output.

1.2.3 Conclusions

As demonstrated in Table 1.2, the security margin of the 4 SHA-3 hash func-

tions against known attacks is remarkable. Indeed, when considering the core

security properties of hash functions, current cryptanalysis techniques can only

break up to 5 out of full 24 rounds (about 21%) of the SHA-3 hash functions.

While weaker types of distinguishers on the hash functions can target a few

more rounds, their security margin remains very large. Other types of distin-

guishers on the internal SHA-3 permutation can target a relatively large number

of rounds, but they have no in�uence on the security of the actual SHA-3 hash

functions. To conclude, after more than 6 year of extensive analysis, there is

very good con�dence in the security of the 4 SHA-3 hash functions.

The con�dence in the security of the SHA-3 XOFs is somewhat lower, as their

underlying Keccak instances did not undergo direct public analysis during or

after the SHA-3 competition. However, similarly to the 4 SHA-3 hash functions,

the security of the XOFs is based on the strength of the Keccak permutation,

which has undergone extensive analysis. Therefore, the security margin of the

XOFs against dedicated attacks should generally be similar to the margin of the

4 SHA-3 hash functions.

6



Chapter 2

Summary of Cryptanalysis of

SHA-3

This chapter summarizes the published cryptanalysis of the SHA-3 hash func-

tions during and after the SHA-3 competition. We start with a brief description

of SHA-3 and additional preliminaries. Then, the summary of cryptanalysis is

divided into categories according to the applied techniques.

2.1 Preliminaries

In this section, we give a brief description of SHA-3, and outline the di�erence

between SHA-3 and the underlying Keccak instances from the cryptanalytic

perspective. Then, we give a short summary on generic attacks on SHA-3.

2.1.1 Description of Keccak

We give with a brief description of SHA-3 and the underlying Keccak sponge

function. For more details, refer to the Draft FIPS PUB 202 [32].

The sponge construction [7] works on a state of b bits, which is split into two

parts (see Figure 2.1): the �rst part contains the �rst r (rate) bits of the state

and the second part contains the last c = b− r (capacity) bits of the state.
Given a message, it is �rst padded using a padding rule, then cut into r-bit

blocks, and the b state bits are initialized to zero. The sponge construction

then processes the message in two phases: In the absorbing phase, the message

blocks are processed iteratively by XORing each block into the �rst r bits of

the current state, and then applying a �xed permutation on the value of the

b-bit state. After processing all the blocks, the sponge construction switches

to the squeezing phase. In this phase, n output bits are produced iteratively,
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where in each iteration the �rst r bits of the state are returned as output and

the permutation is applied.

Figure 2.1: The Sponge Construction [6]

The Keccak hash function uses multi-rate padding: given a message, it �rst

appends a single 1 bit. Then, it appends the minimum number of 0 bits followed

by a single 1 bit, such that the length of the result is a multiple of r. Thus,

multi-rate padding appends at least 2 bits and at most r + 1 bits.

The Keccak instances which are used in SHA-3 have b = 1600. The 1600-

bit state can be viewed as a 3-dimensional array of bits, A[5][5][64], and each

state bit is associated with 3 integer coordinates, A[x][y][z], where x and y are

taken modulo 5, and z is taken modulo 64. Keccak uses the following naming

conventions, which are helpful in describing the permutation:

• A row is a set of 5 bits with constant y and z coordinates, i.e. A[∗][y][z].

• A column is a set of 5 bits with constant x and z coordinates, i.e. A[x][∗][z].

• A lane is a set of 64 bits with constant x and y coordinates, i.e. A[x][y][∗].

• A slice is a set of 25 bits with a constant z coordinate, i.e. A[∗][∗][z].

The Keccak permutation with b = 1600 (which is the only permutation rel-

evant to this report) consists of 24 rounds, each round consists of �ve mappings

R = ι ◦ χ ◦ π ◦ ρ ◦ θ. The �ve mappings are given below, for each x,y, and z:

1. θ is a linear map, which adds (over GF (2)) to each bit in a column, the

parity of two other columns.

θ: A[x][y][z]← A[x][y][z]⊕
4∑

y′=0

A[x− 1][y′][z]⊕
4∑

y′=0

A[x+ 1][y′][z − 1]
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We note that the inverse mapping, θ−1, which is more complicated and

provides much faster di�usion: for θ−1, �ipping the value of any input bit,

�ips the value of more than half of the output bits.

2. ρ rotates the bits within each lane by T (x, y), which is a prede�ned con-

stant for each lane.

ρ: A[x][y][z]← A[x][y][z + T (x, y)]

3. π reorders the lanes.

π: A[x][y][z]← A[x′][y′][z], where

(
x

y

)
=

(
0 1

2 3

)
·
(
x′

y′

)
4. χ is the only non-linear mapping of Keccak, working on each of the 320

rows independently.

χ: A[x][y][z]← A[x][y][z]⊕ ((¬A[x+ 1][y][z]) ∧A[x+ 2][y][z])

Since χ works on each row independently, in can be viewed as an Sbox

layer which simultaneously applies the same 5 bits to 5 bits Sbox to the

320 rows of the state. We note that the Sbox function is an invertible

mapping, the algebraic degree of each output bit of χ as a polynomial in

the �ve input bits is only 2. We also note that the algebraic degree the

inverse mapping χ−1 is 3.

5. ι adds a round constant to the state.

ι: A← A⊕RC[ir]

The �rst three Keccak round mappings are linear, and we denote their com-

position by L , ρ ◦ π ◦ θ.

2.1.2 Description of SHA-3

The four SHA-3 hash functions are de�ned from Keccak[c] (where c denotes the

capacity), by appending two bits (domain separation) to the message and by

specifying the length of the output, as follows:

SHA3�224(M) = Keccak[448](M ||01, 224)

SHA3�256(M) = Keccak[512](M ||01, 256)

SHA3�384(M) = Keccak[768](M ||01, 384)

SHA3�512(M) = Keccak[1024](M ||01, 512)

The two SHA-3 XOFs can be de�ned directly from Keccak, as follows:

SHAKE128(M,d) = Keccak[256](M ||1111, d)

SHAKE256(M,d) = Keccak[512](M ||1111, d)
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2.1.3 The Di�erence Between SHA-3 and Underlying Kec-

cak Instances

As described above, the SHA-3 instances are derived directly from Keccak in-

stances by concatenating a few bits to the input message of the underlying

Keccak instances. As the SHA-3 instances are also instances of Keccak, from a

cryptanalytic point of view they are at least as strong as the underlying Kec-

cak instances. Namely, any attack on a SHA-3 instance is an attack on the

underlying Keccak instance, but an attack on a Keccak instance cannot neces-

sarily be applied to the corresponding SHA-3 instance. In particular, the bits

concatenated to the message reduce the number of degrees of freedom available

to the attacker in the last message block, and this could potentially counter

attacks on Keccak instances which target this block (all the attacks on Keccak

instances published to date target the last message block). This implies that

one needs to reconsider the published analysis on Keccak and check whether it

also applies to SHA-3. In general, since only a few bits are concatenated to the

SHA-3 message, their e�ect is expected to be negligible in most cases. Indeed,

we have veri�ed that the techniques of Sections 2.2, 2.4 and 2.5 are applicable

to SHA-3 (essentially) in the same way they are applicable to the underlying

SHA-3 instances. The analysis of the techniques of Section 2.3 is somewhat

more involved and requires additional work, but we stress that such analysis

will not change our conclusion, which asserts that the Keccak instances resist

these techniques, and therefore also the instances of SHA-3.

We note that as SHA-3 uses the Keccak permutation, there is no di�erence

between them in terms of cryptanalysis of type 3 (distinguishers on the per-

mutation, as de�ned in Chapter 2), and the di�erences above only apply to

cryptanalysis of types 1 and 2.

2.1.4 Generic Attacks

Before evaluating the resistance of the SHA-3 functions against dedicated at-

tacks, we state their security against generic attacks that are applicable to any

hash function, and against generic attacks that are applicable to any sponge

function: Any hash function with an n-bit output provides (at most) n/2-bit

security against collision attacks and n-bit security against preimage and sec-

ond preimage attacks. When considering a sponge function with capacity c, it

provides c/2-bit security against generic attacks, unless the hash function itself

provides less security (see [7]). Therefore, the security of the SHA-3 instances

against generic collisions attacks and against (second) preimage attacks in Ta-

ble 1.1 is calculated according to the formulas min(n/2, c/2) and min(n, c/2),

respectively.
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2.2 Di�erential Techniques

Di�erential cryptanalysis of hash functions analyzes the propagation of di�er-

ences (typically XOR di�erences - over GF (2)) of message pairs m1 and m2

with a �xed input di�erence ∆in inside the internal components of the hash

function. A di�erential characteristic is a speci�c way in which ∆in propagates

to an output di�erence ∆out, and it is associated with a probability p which

is an estimation of the probability that an arbitrary message pair with input

di�erence ∆in will have an output di�erence of ∆out.

The main application of di�erential cryptanalysis to hash functions is in

collision attacks, where the attacker tries to �nd a characteristic in which ∆out =

0 with a (relatively) high probability p. Then, by trying about p−1 arbitrary

message pairs with corresponding input di�erence ∆in, the attacker is likely to

encounter a collision, i.e., a message pair m1 and m1 ⊕∆in such that H(m1) =

H(m1⊕∆in). In order to protect against di�erential cryptanalysis, it is generally

expected that a hash function exhibits no high probability characteristics, i.e.,

it is desirable to upper bound the probability of any di�erential characteristic

for the hash function.

Di�erential cryptanalysis of Keccak starts with analysis of its main building

block, namely the Keccak permutation. It is important to note that general

di�erential characteristics of high probability for the Keccak permutation are

considered distinguishers of type 3 (as de�ned in Chapter 1). In order to attack

an actual Keccak hash function instance, the input di�erence ∆in of the char-

acteristic should �t into the initial state of Keccak, namely, the input di�erence

on the c capacity bits (which are not under control of the attacker) should be

set to 0.1 Assuming that this is the case, then if the output di�erence ∆out on

the output bits is zero, the characteristic may lead to a collision attack (crypt-

analysis of type 1). Otherwise, it can be considered a distinguisher on the hash

function (cryptanalysis of type 2), as it may be exploited to generate message

pairs with a �xed (non-zero) output di�erence ∆out more e�ciently than ex-

pected from a random function. Generally, in order to �nd the best di�erential

attacks, the cryptanalyst searches for di�erential characteristics of the highest

possible probability.

In the rest of this section, we describe the known results regarding search

for di�erential characteristics for round-reduced Keccak permutation. Then,

we describe results that use these characteristics in order to attack the actual

instances of Keccak.

1In this report, we mainly consider collisions between short single-block messages for which
the di�erence of the c capacity bits must be set to zero. This is not necessarily the case in
collisions between multi-block messages which di�er in more than one message block, but such
messages were not considered in previous collision attacks on Keccak.
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2.2.1 Search for Di�erential Characteristics

Table 2.1 gives the currently best known results with respect to di�erential

characteristics for round-reduced Keccak permutation. More details on these

results are given below.

Rounds Best Known Probability [reference] Upper bound [reference]

3 2−32 [22] 2−32 [16]

4 2−134 [16] -

5 2−510 [31] -

6 2−1360 [9] 2−74 [16]

24 - 2−296 [16]

Table 2.1: Probability of Best Known Di�erential Characteristics and Upper

Bounds for Round-Reduced Keccak Permutation

As many related hash function designs, the permutation contains a non-

linear mapping, χ, which ensures that di�erential characteristics of high Ham-

ming weight (namely, a large number of non-zero di�erence bits, or �active bits�)

have low probability, and linear mappings (in particular θ) that provide di�u-

sion, i.e., ensure that a characteristic over several rounds has high Hamming

weight. The combination of these two types of mappings allows to upper bound

the probability of a di�erential characteristic over several rounds, as initially

done in the Keccak submission to the SHA-3 competition [9].

While several of the concrete results of [9] were improved since its publi-

cation (mostly in [16]), it de�ned several important notions that were used in

subsequent papers both to search for di�erential characteristics and to upper

bound their probabilities. One of these notions is the column parity kernel or

CP-kernel, which describes a special set of states (or state di�erences) in which

the parity of all 320 columns is zero. As the θ mapping adds to each bit in

a column, the parity of two other columns, it acts as an identity on the CP-

kernel states and does increase its Hamming weight. On the other hand, [9]

lower bounded the branch number of θ (the sum of Hamming weights of input

and output) for states that are not in the CP-kernel. These techniques were

used to search for characteristics with high probability over a few rounds of the

permutation by limiting the search to characteristics that stay in the CP-kernel

and a small number of low Hamming weight ones that are not in the CP-kernel.

The INDOCRYPT 2011 paper [31] by Naya-Plasencia et al. introduced

the notion of a double kernel, which describes a state di�erence (or a di�er-

ential characteristic) that remains inside the CP-kernel of θ for two consec-

utive rounds. Naya-Plasencia et al. then introduced an algorithm which ef-

�ciently �nds double-kernel di�erential characteristics, and extended them to

more rounds (the extensions for more than 2 rounds are outside the CP-kernel).

However, once out of the CP-kernel, the Hamming weight of the state di�er-
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|0000000000008000|0000000000000000|0000000000000000|0000000000000000|0000000000000000|

|0000000000000000|0000000000000000|0000000000000000|0000000000000000|0000200000000000|

|0000000000008000|0000000000000000|0000000000000000|0000000000000000|0000000000000000|

|0000000000000000|0000000000000000|0000000000000000|0000000000000000|0000000000000000|

|0000000000000000|0000000000000000|0000000000000000|0000000000000000|0000200000000000|

The state is described as a matrix of 5× 5 lanes of 64 bits, ordered from left to

right, where each lane is given in hexadecimal using the little-endian format.

Example 1: A state in the column parity kernel with Hamming weight 4

ences of the characteristic increases rapidly and the probability of characteristics

which are longer than 3 rounds are signi�cantly lower.

The FSE 2012 paper [22] by Duc et al. studied di�erential properties of

the Keccak permutation, independently of [31]. The main motivation of [22]

was to apply the rebound attack (originally published in [27]) to the Keccak

permutation, whereas this attack was typically applied to AES-based permu-

tations. The main idea of the rebound attack is to e�ciently connect several

di�erential characteristics for the permutation of the hash function by initiating

the search for conforming pairs that follow the characteristics from the middle

of the permutation and exploiting available degrees of freedom.

The main result of [22] is an 8-round distinguisher which requires a work-

load of about 2491. It is important to note that while standard high-probability

di�erential characteristics have a practical in�uence on the security of Keccak,

rebound-based distinguishers of the type presented in [22] seem to be much less

related to the security of the Keccak hash function instances (namely, they are

strictly distinguishers of type 3). The reason for this is that search for con-

forming pairs from the middle of the permutation does not take into account

the constraints imposed on the c capacity bits in the initial state of the char-

acteristic, and they seem to be inapplicable to Keccak hash function instances

(regardless of the workload they require).

Unlike rebound distinguishers, the individual standard di�erential character-

istics presented in [22] are more related to the security of Keccak hash function

instances. Independently of [31], Duc et al. described a di�erent character-

istic search algorithm for the Keccak permutation, and used it to �nd actual

characteristics for up to 5 permutation rounds. All of these characteristics are

extensions of shorter low-Hamming weight characteristics that stay in the CP-

kernel for one or two rounds (i.e. double-kernel di�erential characteristics).

Finally, the FSE 2012 paper [16] by Daemen et al. presented a re�ned algo-

rithm for search of di�erential characteristics for the Keccak permutation. The

algorithm extended the work of [22] and exploited symmetries and additional

properties of the Keccak mappings in order to represent its state in a compact

way, which allows enumerating all 3-round characteristics with probability as

low as 2−36. As a result, [16] was able to formally prove that the 3-round charac-

teristic of probability 2−32 found in [22] is the highest probability characteristic
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|----------------|----------------|---------------1|-------4--------|----------------|

|----------------|----------------|----------------|----------------|----------------|

|----------------|----------------|----------------|----------------|----------------|

|----------------|----------------|----------------|-------4--------|----8-----------|

|----------------|----------------|---------------1|----------------|----8-----------|

↓ L
|----------------|----------------|----------------|--8-------------|2---------------|

|4---------------|----------------|----------------|----------------|2---------------|

|----------------|----------------|----------------|--8-------------|----------------|

|----------------|----------------|----------------|----------------|----------------|

|4---------------|----------------|----------------|----------------|----------------|

↓ χ (p = 2−12)

|----------------|----------------|----------------|--8-------------|2---------------|

|4---------------|----------------|----------------|----------------|2---------------|

|----------------|----------------|----------------|--8-------------|----------------|

|----------------|----------------|----------------|----------------|----------------|

|4---------------|----------------|----------------|----------------|----------------|

↓ L
|----------------|----------------|----------------|----------------|----------------|

|-----------8----|-----------2----|----------------|----------------|----------------|

|----------------|----------------|-----------1----|----------------|-----------1----|

|---------1------|-------4--------|----------------|----------------|----------------|

|----------------|----------------|----------------|----------------|----------------|

↓ χ (p = 2−12)

|----------------|----------------|----------------|----------------|----------------|

|-----------8----|-----------2----|----------------|----------------|----------------|

|----------------|----------------|-----------1----|----------------|-----------1----|

|---------1------|-------4--------|----------------|----------------|----------------|

|----------------|----------------|----------------|----------------|----------------|

A zero hexideciamal character is shown as '-'. The inputs to θ (and to L) in the

2 rounds are di�erences which are in the CP-kernel. As ι does not in�uence the

state di�erence, it is not speci�ed.

Characteristic 1: A (2-round) double-kernel characteristic with probability

p = 2−24
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for 3 rounds of the Keccak permutation. The search for 3 round character-

istics was partially extended to 4 rounds, and allowed Daemen et al. to �nd

the best known 4-round di�erential characteristic. Furthermore, by considering

concatenations of 3-round characteristics, [16] also proved that there exists no

di�erential characteristic with probability higher than 2−74 for 6 rounds of the

Keccak permutation. This upper bound trivially extends to the full 24-round

permutation by considering concatenations of four 6-round characteristics, and

obtaining the upper bound 2−74·4 = 2−296.

2.2.2 Exploiting Di�erential Characteristics to Attack the

Hash Function

The INDOCRYPT 2011 paper [31] presented �rst results on the actual round-

reduced Keccak hash function instances Keccak[448] and Keccak[512] (which are

similar to SHA3-224 and SHA3-256, respectively). In particular, it presented

practical collision attacks on 2 rounds of the hash functions using single-block

message pairs (or messages of arbitrary length which di�er only in the last block)

by exploiting double-kernel characteristics in which ∆in is zero in the capacity

bits and ∆out is zero on the output bits (satisfying the constraints described at

the beginning of the section). The characteristics were also extended to 3 and

4 rounds (with non-zero output di�erence) to give distinguishers on the hash

function instances. Note that results were not obtained for KECCAK[768] and

KECCAK[1024] (SHA3-384 and SHA3-512). The reason for this is that the

value of c is much larger in these instances, and it is signi�cantly more di�cult

to �nd good characteristics in which ∆in is zero in all the capacity bits.

The FSE 2012 paper [18] by Dinur et al. presented practical collision attacks

on 4 rounds of the Keccak hash function instances Keccak[448] and Keccak[512]

using single-block message pairs. It also devised distinguishers on 5 rounds of

these hash function instances.

The starting point of the technique of [18] was the double kernel characteris-

tics presented in [31] and [22]. Such a 2-round characteristic of high probability

was extended by one round backwards to form a 3-round characteristic (as done

in [22]). However, due to the very fast di�usion of θ−1, the initial di�erence of

the characteristic has a high Hamming weight. Therefore, it does not satisfy

the constraint that ∆in is zero in the capacity bits, and cannot be directly used

to attack the hash function in the way that 2-round characteristics were used

in [31]. On the other hand, extending it backwards by an additional round

in a standard way would have a very high cost in probability due to the high

Hamming weight of its initial di�erence.

The main idea of [18] was to link the initial state of the extended 3-round

characteristic (called the target di�erence) to the initial state of the hash func-

tion (Keccak[448] or Keccak[512]) using another round of the permutation with

an algorithm called the target di�erence algorithm. The 4-round collision attack
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of [18] is thus composed of two parts, where in the �rst part the target di�erence

algorithm is executed in order to obtain a large set of message pairs that satisfy

the target di�erence after the �rst round with probability 1. The second part of

the attack is a standard di�erential attack in which the message pairs (returned

by the target di�erence algorithm) are evaluated in order to �nd a pair whose

di�erence evolves according to the 3-round characteristic (whose starting state

is the target di�erence).

Internally, the target di�erence algorithm uses algebraic techniques to �nd

message pairs that satisfy the target di�erence after 1 round. It exploits the rela-

tively low (quadratic) algebraic degree of the permutation, and utilizes the abun-

dance of degrees of freedom available in Keccak[448] and Keccak[512] (namely,

the large value of r). One of the reasons for which the technique was not ap-

plied to KECCAK[768] and KECCAK[1024] (SHA3-384 and SHA3-512) is the

reduced value of r for these instances.

|26978AF134CB835E|AF224C4D78366789|C4DAE35E2656F26B|357C4789AF3-6AF1|78D3526BC6A74C4D|

|26978AF134CB835E|AF224C4D78366789|C4DAE35E2656F26B|357C4789AF3-6AF1|78D3526BC6A74C4D|

|26978AF134CB835E|AF224C4D78366789|C4DAE35E2676F26B|357C4789AF3-6AF1|78D3526BC4A74C4D|

|26978AF134CB835E|AF224C4D78366789|C4DAE35E265EF26B|357C4789AF3-4AF1|78D3526BC6A74C4D|

|26978AF134CB835E|AF226C4D78366789|C4DAE35E2656F26B|35FC4789AF3-6AF1|78D3526BC6A74C4D|

↓ R
|----------------|----------------|---------------1|-------4--------|----------------|

|----------------|----------------|----------------|----------------|----------------|

|----------------|----------------|----------------|----------------|----------------|

|----------------|----------------|----------------|-------4--------|----8-----------|

|----------------|----------------|---------------1|----------------|----8-----------|

↓ R
|----------------|----------------|----------------|--8-------------|2---------------|

|4---------------|----------------|----------------|----------------|2---------------|

|----------------|----------------|----------------|--8-------------|----------------|

|----------------|----------------|----------------|----------------|----------------|

|4---------------|----------------|----------------|----------------|----------------|

↓ R
|----------------|----------------|----------------|----------------|----------------|

|-----------8----|-----------2----|----------------|----------------|----------------|

|----------------|----------------|-----------1----|----------------|-----------1----|

|---------1------|-------4--------|----------------|----------------|----------------|

|----------------|----------------|----------------|----------------|----------------|

The initial high Hamming weight state di�erence of the characteristic is the

target di�erence.

Characteristic 2: A 3-round characteristic used in the 4-round collision attack

of [18]

Finally, we also mention the more recent AFRICACRYPT 2014 paper [17].

This paper built on the target di�erence algorithm of [18], and combined it

with longer (and truncated) di�erential characteristics in order to obtain a dis-

tinguisher on 6 rounds of Keccak[448] and Keccak[512].
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2.2.3 Discussion

There are interesting open questions regarding the security of Keccak with re-

spect to di�erential cryptanalysis. In particular, the upper bound on the proba-

bility of di�erential characteristics matches the lower bound for (up to) 3 rounds

of the permutation, while for 4 rounds (and more) there is a big gap between

the best known di�erential characteristic and the proven upper bound (see Ta-

ble 2.1). This gap is attributed to the large state of the permutation and the

di�culty to group and analyze together many di�erential characteristics (as typ-

ically done in AES-based designs) using a compact representation of the state

(the paper [8] explicitly addressed this issue). While improved algorithms that

search for di�erential characteristics were introduced in [16], they were only able

to obtain optimal results for up to 3 rounds, and it is likely that better di�eren-

tial characteristics exist already for 4 rounds. Newly found characteristics could

push existing attacks on the Keccak hash functions by an additional round or

even two rounds, but any improvement beyond this would be very surprising.

For the full 24-round Keccak permutation, the proven upper bound in [16] is

2−296, but it seems highly likely that the probability of the actual best char-

acteristic is signi�cantly lower, and reducing this bound is another interesting

open problem.

An additional potential direction to improve existing di�erential attacks is

to extend the target di�erence algorithm of [18] to more than 1 round. For

example, one can try to place a 3-round di�erential characteristic in rounds

2�5 of the permutation and try to mount a 5-round collision attack on the

hash function by running the (improved) target di�erence algorithm to obtain

message pairs that conform to the target di�erence after 2 rounds. However, the

potential of this technique in improving existing attacks seems rather limited,

as the original target di�erence algorithm exploited the simplicity of a single

permutation round (and in particular its low algebraic degree), while analyzing

more rounds seems to be signi�cantly more complex.

As summarized in this section, the security margin of the four Keccak hash

functions that were submitted to the SHA-3 competition against di�erential

cryptanalysis is very big: while the Keccak instances use a 24-round permu-

tation, collision attacks can break (some of) these instances only when their

internal permutation is reduced to 4 rounds, and weaker distinguishers can only

reach up to 6 rounds. Similar conclusion apply to the corresponding SHA-3

hash functions. Even when considering more exotic attack models which tar-

get the permutation rather than a concrete hash function instance, there are

published results only on up to 8 rounds [22]. This also gives con�dence in the

security of the two SHA-3 XOFs against di�erential cryptanalysis, even through

they were not explicitly analyzed. We conclude that while there is some room

for improving existing di�erential techniques, these potential improvements are

limited and should not threaten the security of any SHA-3 instance.
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2.3 Techniques Based on Rotational and Sym-

metric Properties

Four out of �ve Keccak mappings were designed to preserve a special symmetric

property which allows some performance optimizations and also helps to analyze

its security against some cryptanalytic attacks (e.g., some of the optimizations

used to obtain di�erential bounds in [16] exploit this property). The property

asserts that four out of the �ve internal mappings of Keccak (all but ι), are

translation invariant in the direction of the z axis. Namely, if one state A

is the rotation of another state A′ with respect to the z-axis (i.e., satis�es

A′[x][y][z] = A[x][y][z + i], for some value of i), then applying to them any

of the θ, ρ, π, χ operations, maintains this property. The translation invariance

property is broken by the �fth mapping ι, which adds constants to the Keccak

state that are not translation invariant (for any 0 < i < 64). However, the

constants added by ι are of a low Hamming weight, and therefore they have a

limited e�ect in the �rst few rounds of the permutation. This observation gives

rise to some interesting properties of the reduced Keccak permutation, and was

exploited in several publications, as noted below.

The FSE 2013 paper [28] by Morawiecki et al. used rotation cryptanalysis

(formally introduced in [24]) of round-reduced Keccak to speed up preimage

search on (up to) 4 rounds. The basic idea of [28] was to evaluate the reduced

permutation on one single-block message and record its output. Denote the

initial state of the evaluated message by A. Then, based on the translation

invariance property which is not completely ruined by ι, it is possible to predict

several (but not all) output bits for (up to) additional 63 rotated single-block

messages, whose initial states A′ are rotated variants of A, namely, A′[x][y][z] =

A[x][y][z + i] for i ∈ {1, 2, . . . , 63}. The predicted output bits for these 63

additional messages allow to disqualify messages whose output bits do not match

the desired preimage bits, and actually evaluate the permutation only when a

match on these bits is guaranteed. This technique allowed [28] to save a factor

of up to 64 in preimage search on up to 4-rounds of the 4 Keccak hash functions

(see Table 1.2). The analysis was also extended to 5 rounds of the permutation

to obtain some non-random properties (namely, cryptanalysis of type 3).

The FSE 2013 paper [19] by Dinur et al. exploited the translation invari-

ance property of the four Keccak mappings in a di�erent way to mount collision

attacks. The main idea of [19] was to select a symmetric state A such that

A[x][y][z] = A[x][y][z + i] for some �xed value of 0 < i < 64. Since opera-

tions on the z axis are performed modulo 64, this implies that i divides 64,

or i ∈ {1, 2, 4, 8, 16, 32}. The translation invariance property implies that the

symmetry is preserved by the mappings θ, ρ, π, χ, but is ruined by ι. However,

since the constants added by ι are of low Hamming weight, the state remains

close to symmetric in the �rst few rounds of the Keccak permutation, namely,

equalities of the form A[x][y][z] = A[x][y][z + i] are preserved for many bits of
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the state, while for a minority of the bits A[x][y][z]⊕A[x][y][z + i] = 1.

|169D169D169D169D|A965A965A965A965|3EC73EC73EC73EC7|9025902590259025|C264C264C264C264|

|A34BA34BA34BA34B|0F330F330F330F33|4902490249024902|3D683D683D683D68|613D613D613D613D|

|C684C684C684C684|B368B368B368B368|589B589B589B589B|5F335F335F335F33|E27AE27AE27AE27A|

|22E822E822E822E8|3D583D583D583D58|B37AB37AB37AB37A|1047104710471047|D525D525D525D525|

|60F360F360F360F3|C3E4C3E4C3E4C3E4|37FA37FA37FA37FA|8193819381938193|69BA69BA69BA69BA|

Each lane of the state consists of 4 repetitions of a 16-bit word.

Example 2: A symmetric state with i = 16

The technique used in [19] to analyze symmetric relations over several rounds

of the permutation is called generalized internal di�erential cryptanalysis, gen-

eralizing the original method published in [33]. While standard di�erential

cryptanalysis considers two di�erent plaintexts, and analyzes the evolution of

the di�erence between them, internal di�erential cryptanalysis considers only

one plaintext, and follows the statistical evolution of the di�erences between its

parts. In the case of Keccak, internal di�erential cryptanalysis is used in [19] to

track the statistical evolution of almost symmetric states through the �rst few

rounds of Keccak.

When symmetric relations are carried over several rounds to the output of

the hash function, they reduce its e�ective size, and this technique is used in [19]

to speed up collision search. The attack works by producing arbitrary (nearly)

symmetric outputs starting from arbitrary symmetric states, but as the number

of (nearly) symmetric outputs is signi�cantly smaller than the total number of

possible outputs, a collision is expected to occur much faster compared to a

standard birthday attack. This is called a squeeze attack in [19], since it forces

many (symmetric) inputs to squeeze into a small subset of possible (nearly

symmetric) outputs in which collisions are more likely.

For example, assuming i = 16, in a symmetric state, A[x][y][z] determines

A[x][y][z+16], A[x][y][z+32] and A[x][y][z+48]. Thus, the e�ective output size

of a symmetric SHA3-256 output is signi�cantly reduced from 256 to 256/4 = 64

bits, and the birthday bound is reduced from 2256/2 = 2128 to 264/2 = 232. When

considering nearly symmetric states, the e�ective output size is larger than 64

bits, but it can still be signi�cantly smaller than 256 (depending on how many

nearly symmetric states are possible), and the collision attack may still require

less than 2128 e�ort.

The main results of [19] (summarized in Table 1.2) include practical col-

lision attacks on Keccak[768] and Keccak[1024], a 4-round collision attack on

Keccak[768] with complexity 2147 and a 5-round collision attack on Keccak[512]

with complexity of about 2115.

We also mention the AFRICACRYPT 2014 paper [25], which used similar

techniques to [19] to obtain a distinguisher on 6 rounds of the permutation

(namely, cryptanalysis of type 3).
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We note that most of the attacks mentioned in this section2 exploit the

fact that the c bits of capacity in the initial state of Keccak (which are not

under control of the attacker) are set to zero. This allowed choosing (about)

64 rotated variants of an arbitrary initial state of Keccak in [28], and allowed

choosing symmetric initial states in [19]. This also implies that these techniques

can only be applied using 1-block messages.

2.3.1 Discussion

As noted in [19], there is an interesting relation between standard di�erential

cryptanalysis and generalized internal di�erential cryptanalysis used to analyze

symmetric relations over several rounds of the permutation. Roughly, the asym-

metric relations in a given state propagate in a similar way to non-zero di�erence

relations of two states in di�erential cryptanalysis. In general, this implies that

the strong resistance of the Keccak permutation to di�erential cryptanalysis

should also ensure its resistance to the type of attacks described in this sec-

tion. However, the analysis of rotational and symmetric properties is somewhat

more involved compared to di�erential cryptanalysis due to e�ect of the round

constants (which are ignored in di�erential cryptanalysis).

We conclude that, in several cases, the techniques described in this section

yield somewhat more e�cient attacks on Keccak compared to di�erential tech-

niques. Furthermore, as these untraditional cryptanalytic techniques are less

understood and involve more complex analysis, there seems to be more room

for improved attacks compared to di�erential techniques. However, the very

large security margin of Keccak against existing cryptanalysis based on rota-

tional and symmetric properties and their relation to di�erential cryptanalysis

should ensure that they do not threaten the security of any concrete Keccak

instance.

Finally, we note that the four SHA-3 hash functions (SHA3-224, SHA3-

256, SHA3-385 and SHA3-512) seem to resist cryptanalysis based on rotational

and symmetric properties somewhat better than the corresponding underlying

Keccak instances (Keccak[448], Keccak[512], Keccak[768] and Keccak[1024]).

The reason for this is that the additional bits added to the �nal block of the

message in SHA-3 limit the ability of the attacker to choose rotational variants of

a given state (in the attacks of [28]), or symmetric states (in the attacks of [19]).

However, this only strengthens the conclusions of this section, regarding the

strong resistance of the SHA-3 instances to cryptanalysis based on rotational

properties and symmetry (although the the exact complexities of the attacks

described in this section on the four Keccak instances may require reevaluation

for the four SHA-3 hash functions).

2Not including the 5-round collision attack of [19] on Keccak[512].
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2.4 Algebraic Techniques

In Section 2.2, we mentioned the work of [18, 20], which combined di�eren-

tial and algebraic techniques. In this section, we fucus on published algebraic

cryptanalytic techniques on Keccak that are based on high order di�erential

cryptanalysis [26]. The most important property of Keccak for such cryptanal-

ysis, is the fact that the algebraic degree of each output bit of its round function

over GF (2) is only 2 in the input bits, due to the (only) non-linear map χ. This

implies that the degree of each output bit of m Keccak permutation rounds is at

most 2m in the input bits. When considering m permutation rounds, the result

of a high order di�erentiation over an a�ne subspace of inputs of dimension

m + 1 is zero for all output bits. Over GF (2), where addition and subtraction

are the same operation, such high order di�erentiation simply reduces to sum-

ming (modulo 2) the output bits of them permutation rounds over the subspace

of size 2m+1. This simple analysis was published in the Keccak submission doc-

ument, which gave upper bounds on the algebraic degree of monomials in the

algebraic normal form (ANF) of the permutation, as function of its number of

rounds. Then, based on experimental results, a more detailed analysis of the

ANF of Keccak was given in [1]. It showed that it is possible to choose smaller

subspaces for 3 and 4 rounds of Keccak to obtain a zero sum, but the general

conclusion of [1] regarding the algebraic strength of Keccak was similar to the

submission document.

In order to exploit the simple high order di�erential property to obtain dis-

tinguishers on Keccak instances (cryptanalysis of type 2), consider single block

messages where the desired subspace of dimension m+ 1 is taken from the mes-

sage bits (rather than from the bits of the permutation which are not under

control of the attacker). The attacker needs to evaluate only 2m+1−1 messages

in this subspace in order to obtain the output of the missing message �for free�

(as the sum of outputs of all messages is zero). Thus, the attacker can obtain

a small speedup of (2m+1 − 1)/2m+1 when searching for preimages (or second

preimages) for a Keccak instance with permutation reduced to m rounds, as-

suming that the security level of the instance (the complexity of the generic

preimage attack) is more than 2m+1. This basic idea was extended by Bern-

stein in [3] by considering larger subspaces and predicting more outputs using

fast polynomial evaluation techniques. These techniques give somewhat better

improvement factors as they reduce the amortized computation time that the

attacker has to perform per output, in exchange of a large amount of memory.

The maximal value of m for which this technique is applicable is determined by

the security level of the hash function instance against preimage attacks, reach-

ing up to 8 rounds of Keccak[1024] (where the improvement factor is about
√

2,

or 1/2 of a bit).

The reason for which we consider the techniques of [3] as distinguishers

on Keccak (cryptanalysis of type 2), rather than attacks on the hash function

(cryptanalysis of type 1) is that they are essentially (optimized) variants of ex-
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haustive search. In other words, in order to �nd a preimage for a Keccak instance

with a preimage security level of b bits using these techniques, the attacker has

to perform at least 2b basic bit operations, and the speedup is obtained only

by reducing the number of basic operations performed in an evaluation of the

Keccak permutation. Such variants of exhaustive search are comparable to bi-

clique cryptanalysis [11], and we consider them here as distinguishers on the

hash function due to their inherent limitations. However, we stress that this

is a matter of de�nition, and the classi�cation of cryptanalysis of this type has

been a matter of controversy in the cryptographic community.

A related form of cryptanalysis (which actually preceded [3]) is called zero-

sum distinguishers, originally introduced in [2] by Aumasson and Meier. The

objective of distinguishers of this type is to �nd a zero-sum set, de�ned as

a set of inputs to the permutation whose sum is zero modulo 2, and whose

image set sum is also zero modulo 2. Obviously, the linear subspaces selected

by Bernstein in [3] are zero-sum sets (although they were used in a di�erent

context), but these reach a limited number of rounds. The idea of Aumasson

and Meier was to �nd zero-sums for more rounds of the permutation (rather

than the hash function) by selecting the linear subspace in the middle of the

permutation, and evaluating it both forwards and backwards. Namely, if the

m-round permutation consists of the round sequence Rm ◦ . . . ◦ R2 ◦ R1, then

the linear subspace is selected from some middle round 1 < i < m, and the

permutation is partitioned into an inverse sub-permutation R−11 ◦ . . . ◦ R−1i−1 ◦
R−1i and the remaining sub-permutation Ri+1 ◦ . . . ◦ Rm−1 ◦ Rm. The sum of

evaluations of both the forwards and backwards sub-permutations is zero if the

algebraic degree of the sub-permutations is smaller than the dimension of the

subspace, and in this case the set of inputs to R1 is a zero-sum set. A relevant

fact for this analysis is that the algebraic degree of an inverse-round of the

permutation is 3, which is the degree of χ−1 (whereas the algebraic degree of χ

is only 2).

As the subspace which is used to construct the distinguisher is selected from

the middle of the permutation, it is clear that the obtained distinguisher is

inapplicable to the hash function instances, since the inputs to the �rst round

R1 do not adhere to the restrictions of SHA-1 on the c capacity bits. Thus, zero-

sum distinguishers are considered as cryptanalysis of type 3 and it seems highly

unlikely that they would have any practical in�uence on the security of the hash

function instances. The original zero-sum distinguishers of [2] reached 16 rounds

of the Keccak permutation (with very high complexity of about 21024), and was

later extended to more rounds in [12, 13, 14, 21], mainly using improved bounds

on the algebraic degree of the sequence of inverse sub-permutation rounds. We

note that despite their high complexity and inapplicability to the actual Keccak

hash function instances, zero-sum distinguishers were the main reason that the

Keccak team increased the number of permutation rounds to 24 from the original

number of 18 [5]. Nevertheless, the most optimized analysis [14, 21] is able to
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obtain distinguishers for the full 24-round permutation (with huge complexity

of at least 21579).

2.4.1 Discussion

As detailed in this section, when considering cryptanalysis of types 2 and 3,

algebraic techniques reach the most number of rounds compared to other crypt-

analytic techniques published up to this point. Indeed, when considering distin-

guishers on the hash function (cryptanalysis of type 2), the cryptanalysis of [3]

reaches (up to) 8 rounds. Perhaps, there is a small room for improvement, but

as the results of [3] are inherently limited by the algebraic degree of the Keccak

permutation, we do not expect such improvement to exceed 1 or 2 additional

rounds.

As for distinguishers on the permutation (cryptanalysis of type 3), the crypt-

analysis of [14, 21] reaches the full 24 rounds. However, we stress again that

while distinguishers on the hash function (cryptanalysis of type 2) may be rel-

evant for some applications, zero-sum distinguishers on the permutation pose

no threat to the practical security of any Keccak instance in any application.

Thus, the interest in zero-sum distinguishers, which push cryptanalysis of type

3 to the extreme, remains purely academical.

We conclude that the algebraic techniques analyzed in this section do not

threaten the security of any SHA-3 instance.

2.5 Additional Techniques

In this section, we summarize additional cryptanalytic techniques that were

applied to Keccak and were not described so far.

We �rst mention the analysis of [31], which (in addition to describing di�er-

ential techniques, as summarized in Section 2.2) described preimage attacks for

2 rounds of Keccak[448] and Keccak[512]. These attacks are essentially based on

the partial di�usion properties of 2-round Keccak, and it seems rather di�cult

to extend them to more rounds, where full di�usion is achieved. Furthermore,

these techniques cannot be applied (with practical complexity) to Keccak[768]

and Keccak[1024], due to the limited number of degrees of freedom available to

the attacker in the �nal message block. Interestingly, the attacks of [31] remain

the only practical preimage attacks on reduced Keccak instances, as the subse-

quent analysis of [28] is faster than exhaustive search only by a factor of (up to)

64 (although it can attack more rounds and is applicable to additional Keccak

instances).

Finally, we mention generic tools which were applied to Keccak in order

to obtain distinguishers and mount preimage attacks. These tool include a

�triangulation� tool used in [2] and SAT solvers, used in [23, 29]. Generally

speaking, these tools give some interesting heuristic results when applied to a
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very small number of Keccak rounds (e.g., 2 and 3-round preimage attacks on

Keccak instances with very small output lengths), but it is not clear how to

extend these results to more rounds of Keccak and these techniques seem to

have a rather limited signi�cance.
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