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Chapter 1

Introduction

In this chapter is given a short description of Camellia along with known crypt-
analytical results. A preliminary analysis of the operations used in Camellia is
provided.

1.1 Description

Camellia is 128-bit Feistel block cipher with a number of rounds that depends
on the key size: 18 rounds for 128-bit key size, 24 rounds for 192-bit and 256-bit
keys. All the transformations in the cipher can be divided into two parts:

1. State transforms. Camellia follows the balanced Feistel design and in
each round half of the state (i.e. 64 bits or 8 bytes) is updated by the
round function F which is a byte-oriented SP network: after the XOR of
the round key, the S-layer with 8 S-boxes in parallel is applied, followed
by the P-layer which is a matrix multiplication. There are additional
word-oriented transforms FL,FL−1 after the rounds 6, 12, and 18.

2. Key schedule transforms. The round keys are produced from the mas-
ter key by the same Feistel transform with an additional word rotations.

The mixture of the byte and word oriented transforms in the key schedule makes
the related-key analysis of Camellia complex.

1.2 Known Analysis

Camellia has attracted plenty of attention among the cryptographic community
and the amount of published analysis is quite large. Most of the attacks are in
the framework of impossible differentials on up to 12 rounds with the non-linear
layers and 15 rounds without the layers [28, 34, 33, 22, 23, 20, 1, 18, 17, 5,
2, 21]. Analysis against truncated and higher order differentials was given in
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[14, 12, 28, 8]. Square attacks were proposed on up to 12 rounds of Camellia
without the non-linear layers[16, 35, 9], and collision attacks on up to 6 rounds
[25, 32, 31, 11]. Various attacks and analysis on the original and modified
versions of Camellia were also presented in [27, 15, 30, 13, 4, 19, 10, 6, 26].

1.3 Analysis of the Transformations

To estimate the resistance of Camellia against various attack, first we focus on
each of the transformations used in the cipher. In particular, we analyze the
S-boxes and the linear transformations.

1.3.1 S-box Analysis

The complexity of the differential attacks on a cipher is tightly related to the
differential properties of the S-boxes used in the cipher. In Camellia there are
4 different types of 8x8 non-linear bijective S-boxes. The maximal differential
propagation probability for each of them is 2−6, which is optimal.

1.3.2 Analysis of the Linear Transformations

The branch number of the multiplication by the matrix L, i.e. the minimal num-
ber of active input and output bytes, is 5. This is sub-optimal, as the maximal
branch number for this type of transformations is 9. Low branch number could
lead to potential (impossible) differential attacks on higher number of rounds.

1.3.3 Analysis of the Non-Linear Transformations

The functions FL,FL−1 are 2-round Feistels and use round keys to produce the
output. There exist many good differential characteristics for them, including
those that have zero output difference for specific difference in the input state
and the input round keys, hence FL,FL−1 can cancel the difference in the state,
resulting in a related-key differential attack on extended number of rounds.
However, these two functions play an important role in increasing the diffusion
among the bytes.
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Chapter 2

Cryptanalysis of the
Full-Round Camellia-128
without FL, FL−1 in the
Hashing Mode

2.1 Cryptanalysis of Modified Camellia in the
Hashing Mode

In this chapter we present a distinguisher for the Davies-Meyer1 hash func-
tion mode of Camellia with 128-bit keys and without the non-linear layers
FL,FL−1. The attack exploits the complementation property of Feistel con-
structions which leads to producing differential q-multicollisions which are non-
trivial distinguisher for the hashing mode of Camellia-128 .

2.2 Complementation Property of the Classical
Feistel Construction

The complementation property was first observed in DES. It is based on the
observation that if one flips all of the bits of the master key and the plaintext,
then all of the bits of the ciphertext will flip as well. The foundation of this
observations for Feistel ciphers is given below. Without loss of generality we
assume that the Feistel is balanced as the case for unbalanced Feistels can be
examined similarly.

1Indeed the attack can be mounted on other modes as well.
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A balanced Feistel with r rounds is defined as:

Ln+1 = F (Ln,Kn)⊕Rn

Rn+1 = Ln,

where Kn is the n-th round key, P = L0||R0 is the plaintext, and C = Lr||Rr

is the ciphertext. In the vast majority of Feistel ciphers, the round function
F (L,K) can be decomposed as:

F (L,K) = G(L⊕K),

i.e. first the round key is bitwise added to the state L, followed by some
additional non-linear and linear transformations (G is usually a Substitution-
Permutation network). We use the term classical Feistels for the ciphers that
have such F function.

Let KS(K) be the key schedule function of the cipher, i.e. given the master
key K, the function produces Ki, i = 1, . . . , r round keys:

KS(K) = (K1, . . . ,Kr)

Further assume that all of the round keys Ki are obtained by (possibly different)
bit permutations of the master key K (as in the case of DES). If one has two
related master keys K1,K2 such that K1 ⊕K2 = −1 (with −1 we denote the
difference in all of the bits) then for all i holds K1

i ⊕ K2
i = −1. Let P 1, P 2

be two related plaintexts such that P 1 ⊕ P 2 = −1, i.e. L1
0 ⊕ L2

0 = −1 and
R1

0 ⊕R2
0 = −1. Then by induction for each i we get:

L1
i+1 ⊕ L2

i+1 =F (L1
i ,K

1
i )⊕R1

i ⊕ F (L1
i ,K

1
i )⊕R1

i =

G(L1
i ⊕K1

i )⊕R1
i ⊕G(L1

i ⊕−1⊕K1
i ⊕−1)⊕R1

i = R1
i ⊕R2

i = −1

R1
i+1 ⊕R2

i+1 =L1
i ⊕ L2

i = −1

Therefore L1
r ⊕ L2

r = −1, R1
r ⊕R2

r = −1 and hence there is a difference in all of
the bits of the ciphertext.

The complementation property of such ciphers allows reduction of the key
space by one bit as for the brute force of the whole key space it is sufficient to
try only one half of all possible keys – the other half will produce a compliment
ciphertext under a compliment plaintext.

The complementation property can be observed for ciphers that not necessar-
ily have a key schedule composed of permutations. Notice, the only requirement
on the key schedule is to produce complemented round keys.

Lemma 1 Let for an n-bit classical Feistel cipher EK(P ) with k-bit keys and
a key schedule KS(K) exists a differential with probability p for KS(K) with
output difference in all of the bits in all of the round keys, i.e.

∃∆ : KS(K ⊕∆)⊕KS(K)
p−→ (−1, . . . ,−1)

Then, if p > 2−n, a weak-key class of size p · 2k exists for the cipher EK(P ).
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Proof: Once the difference in all of the round keys is -1, the complementation
property can be applied, i.e. the differential in the state holds with probability
1. Therefore if the attacker can build a differential with the input difference
in the master keys ∆, and output difference -1 in all of the round keys, then
the differential (−1,∆)→ (−1) for the cipher EK(P ) holds with probability p.
To find the right key pair that follows the differential in the key schedule one
has to try around 1/p pairs of master keys with input difference ∆, therefore
the size of this weak key class is 2k · p. For any cipher, to produce a pair of
complemented plaintexts that result in complemented ciphertexts, one has to
try around 2n pairs, hence the probability of the differential has to be higher
than 2−n. �

Remark 1 If the attack can be converted into a key-recovery attack, the prob-
ability of the differential can be lower, nonetheless higher than 2−k.

Remark 2 The complementation property holds regardless of the number of
rounds in the cipher, by increasing the number of rounds one cannot expect to
get a better resistance against this type of attacks.

Remark 3 The additional key whitenings at the beginning and at the end of
the Feistel do not influence the attack complexities, but merely change the input
difference in the plaintext and the output difference in the ciphertext.

Remark 4 The requirement of having the difference -1 in all of the round keys
can be replaced with the requirement of having ∆1,∆2 differences that alternate,
i.e. the first round key has ∆1, the second ∆2, the third ∆1, etc. Then, if the
plaintext has input difference ∆1||∆2, the complementation property would still
hold.

2.3 Notations

We analyze full-round Camellia-128 without the non-linear layers, i.e. we as-
sume FL,FL−1 to be identity functions. To describe the attack we introduce
a few notations.

Camellia is a classical Feistel cipher with a non-linear key schedule defined as
follows. The 128-bit master key KL is split into two keys L,R, i.e. KL = L||R
– both L and R are seen as 8-byte vectors. Further, these keys are fed to a
4-round Feistel-like transformation with an additional keys feedback after the
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second round (see Fig. 2.3). Formally, the key schedule can be described as:

L1||R1 = KL (2.1)

L2 = F (L1 ⊕ Σ1)⊕R1; R2 = L1 (2.2)

L3 = F (L2 ⊕ Σ2)⊕R2; R3 = L2 (2.3)

L3 = L3 ⊕ L1; R3 = R3 ⊕R1 (2.4)

L4 = F (L3 ⊕ Σ3)⊕R3; R4 = L3 (2.5)

L5 = F (L4 ⊕ Σ4)⊕R4; R5 = L4 (2.6)

KA = L5||R5 (2.7)

where Σi are word constants. In the sequel, we omit the addition of the constants
as they play no role in our analysis. The function F is an SP network, with the S-
layer defined as application of eight 8x8 S-boxes, and P-layer is a multiplication
of the eight-byte input with 8x8 byte matrix P . All the round keys Ki used in
the state are obtained from the two keys KL and KA with rotations on various
amounts, e.g. K4 = KL≪15,K15 = KA≪95, etc.

2.4 Complementing Camellia-128

The presented below distiguisher for the hash mode of Camellia-128 without
FL,FL−1 can be summarized as follow. As Camellia is a classical Feistel,
by Lemma 1 we can apply the complementation property, if we can find a
differential for the key schedule. We show that such differential exists, however
its probability is too low for an attack on the block cipher. On the other hand,
we show that a key pair following the differential can be found with a complexity
2112, i.e. lower than than 2128, hence this leads to a distinguisher for the hash
mode of Camellia-128 . We note that a large part of the analysis is focused
on proving the existance of the differential and presenting an algorithm for
obtaining a key pair that satisfies the differential.

From the description of Camellia-128 it follows that two different keysKL,KA

are used, the first key being also the only input to the key schedule. Since
the round keys are produced from these two keys with various rotations it
follows that the differences in KL,KA have to be invariant of rotations and
thus be −1. Therefore, we need the differential ∆KL → (∆KL,∆KA) to be
(−1)→ (−1,−1).

The easiest way to build such differential is by providing a differential trail,
i.e. besides specifying the input and output differences, fixing as well the in-
termediate differences after each transformation in the key schedule. Note that
from the condition on the differential it follows that ∆L1 = ∆R1 = ∆L5 =
∆R5 = −1, i.e. each byte of these words has the fixed difference −1 (or ff in the
hexadecimal representation). Therefore, in the first and the fourth round of the
key schedule, the number of active bytes has to be maximal, i.e. eight active
bytes will enter the S-layer. It is tempting to go with a trail that has no active
bytes (or one active byte) in both the second and third round, hence obtain a
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L1 R1

L2 R2
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Figure 2.1: The key schedule of Camellia-128 with the (−1,−1) → (−1,−1)
differential. The gray values are the differences.

trail of the form (we write only the round-by-round active bytes entering the F
function):

8→ 0→ 0→ 8 or 8→ 1→ 1→ 8

However, these types of trails are not possible due to the matrix multiplication
P , i.e. P-layer. For example, if we require no active bytes in the second round,
then this means the output of the F function in the first round has canceled
with the -1 difference in R1, i.e. if we denote with ã = (a1, . . . , a8) the output
difference of the S-boxes in the function F of the first round, then the above
condition can be expressed as:

P · ã⊕ (−1) = 0⇒ ã = (0, 0, 0, 0,−1,−1,−1,−1)

The solution vector ã has difference only in 4 bytes out of 8, while all the
bijective S-boxes are active, i.e. we get a contradiction. Therefore, the second
round of the key schedule cannot have zero active bytes. A similar situation can
be observed when the second (or the third) round has only 1 active byte.

The above result suggests that the minimal number of active bytes in the
key schedule is 8 + 2 + 2 + 8 = 20. Theoretically, this can lead to a trail
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with probability 2−6·20 = 2−120 > 2−128 when all the active S-boxes hold with
probability 2−6. Due to the specific input and output differences in the active
S-boxes in the first and the fourth rounds, this is not achievable – the differential
probability of these S-boxes is 2−7. Therefore if we assume the differential is
composed of a single trail only, its probability would always be lower than 2−128.

Further we try to find the actual probability of the differential taking into
account all possible differential trails that compose it. All the trails can be
divided into two groups: trails that have the same path (i.e. the have the same
position of the active bytes, but different values for the differences), and trails
that have different path.

Let S̃i be a possible output difference of the S-layer at round i, and F̃i be
an output difference of the F function at round i. Note, both S̃i, F̃i are 8 byte
vectors – S̃i = (s1

i , . . . , s
8
i ), F̃i = (f1

i , . . . , f
8
i ). Also, let Fi be the actual output

of the F function at round i. We will use S(x) to denote the S-layer, and ∆Li

to denote the difference of the left state at round i, hence S(∆Li) = S̃i. From
the definition of the round function it holds F (∆Li) = P ·S(∆Li) = P · S̃i = F̃i.

For S̃1, S̃2, S̃3, S̃3 the following conditions apply (see Fig.1):

• S̃1 is produced when -1 difference in L1 goes through the S-layer:

S̃1 = S(−1) (2.8)

• S̃2 is produced with an XOR of F̃1 and the difference -1 in R1, followed
by the S-layer:

S̃2 = S(F̃1 ⊕ (−1)) = S(P · S̃1 ⊕ (−1)) (2.9)

• S̃3 is produced with application of the S-layer to ∆L3:

S̃3 = S(∆L3)) = S(P · S2) (2.10)

Additionally, when F̃3 is XOR-ed to ∆R3, the output difference -1 is
obtained in R5:

F̃3 ⊕∆R3 = P · S̃3 ⊕ P · S̃1 = −1 (2.11)

• S̃4 is produced when -1 difference in R5 goes through the S-layer:

S̃4 = S(−1) (2.12)

Additionally, when F̃4 is XOR-ed to ∆L3, the output difference -1 is ob-
tained in L5:

F̃4 ⊕∆L3 = P · S̃4 ⊕ P · S̃2 = −1 (2.13)

The probability of the differential can be computed as the sum of probabilities
of all differential trails defined with 4 intermediate differences:∑

(S̃1,S̃2,S̃3,S̃4)| (2.8),(2.9),(2.10),(2.11),(2.12),(2.13) are satisfied

2−7(|S̃2|+|S̃2|+|S̃3|+|S̃4|)

(2.14)
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where |S̃i| denotes the number of active bytes in S̃i. In the following, we try to
simplify the conditions and to achieve formula for computing the above proba-
bility.

Note that although both S̃1 = S(−1) and S̃4 = S(−1) are produced when
(-1) goes through the S-layer, a randomly chosen difference S̃1 and a difference
S̃4 are not necessarily the same (in fact they are different with a very high prob-
ability). To distinguish them we will use S(−1)L1 for the former and S(−1)R5

for the later.
Further we reduce the conditions on all S̃i to conditions only on S̃2, S̃3. From

(2.11) and the linearity of the matrix multiplication P it follows that

P · S̃3 ⊕ P · S̃1 = P · (S̃3 ⊕ S̃1) = −1

This leads to:
S̃3 = P−1(−1)⊕ S̃1 (2.15)

Similarly, from (2.12) and (2.13) we get:

S̃2 = P−1(−1)⊕ S(−1)R5 (2.16)

Taking into account (2.15), the condition (2.9) can be expressed as:

S̃2 = S(P · S̃1 ⊕ (−1)) = S(P · (S̃3 ⊕ P−1(−1))⊕ (−1)) = (2.17)

= S(P · S̃3 ⊕ (−1)⊕ (−1)) = S(P · S̃3) (2.18)

Let us summarize our findings. We get that for S̃2, S̃3 defined as:

S̃2 = P−1(−1)⊕ S(−1)R5 (2.19)

S̃3 = P−1(−1)⊕ S(−1)L1
(2.20)

two additional conditions have to hold:

S̃2 = S(P · S̃3) (2.21)

S̃3 = S(P · S̃2) (2.22)

In S̃1, S̃4 there are always 8 active S-boxes. The number of active S-boxes
in S̃2, S̃3 is defined by the above conditions. As P is linear, we can compute the
value of the vector P−1(−1), i.e.

P−1(−1) = (0, 0, 0, 0, ff, ff, ff, ff) (2.23)

Since the S-boxes in Camellia are bijective, the vector S(−1) always has 8 active
S-boxes. Therefore from (2.19),(2.20) we can conclude that the first 4 elements
of S̃2, S̃3 have to be non-zero, thus the number of active S-boxes in round 2
and 3 is at least 4 (the first 4 bytes must be active). Additionally, regarding
the number and position of the active S-boxes, since there are always at least 4
active S-boxes in S̃2 and S̃3, the conditions (2.21),(2.22) can always be satisfied
(the branch number of P is 4).
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Finally, we can give the probability of the differential (−1,−1)→ (−1,−1):∑
(S̃2,S̃3) satisfy (2.19), (2.20), (2.21), (2.22)

2−7(8+|S̃2|+|S̃3|+8) (2.24)

Recall that a differential is a collection of trails that take the same path and
trails that take different path. We group all trails that take the same path into
one single truncated trail. Then a differential is a collection of truncated trails
and hence its probability is the sum of probabilities of the truncated trails. To
define a truncated trail we just have to fix the position of the actives S-boxes in
the four rounds of the key schedule. With Ti we denote the truncated difference
entering the round function of round i. Then a truncated trail can be defined
as T1, T2, T3, T4. An actual trail with S̃1, . . . , S̃4 belongs to a truncated trail if
the position of the active S-boxes in Si coincide with the position of the active
S-boxes in Ti. Obviously T1 = T4 = (1, 1, . . . , 1) as all the S-boxes in the first
and the fourth round are active. For the probability of the differential we get:∑
(T2,T3)

2−7(8+|T2|+|T3|+8)#{(S̃2, S̃3)|S̃2 ∈ T2, S̃3 ∈ T3, S̃1, S̃2 satisfy (2.19), (2.20), (2.21), (2.22) }

(2.25)
Hence, to find the probability of the differential, we only have to count the
number of possible differential trails (that satisfy a set of conditions) in all
possible truncated trails T2, T3 of the form (1, 1, 1, 1, x5, x6, x7, x8), xi ∈ {0, 1}.
To proceed further we define the notion of compliance.

Definition 1 Two differences ∆1,∆2 comply through the function f(x) if there
exist x such that f(x⊕∆1)⊕ f(x) = ∆2.

This notion is introduced to check if some input difference ∆1 at function f(x)
can produce output difference ∆2.

Observation 1 Two randomly chosen differences ∆1,∆2 comply through the
S-boxes of Camellia with probability 127

255 ≈ 2−1.

Every input difference to the S-box can go to 127 output differences or approx-
imately to 27 out of 28 − 1 possible, which is around 2−1.

As an example, let us compute the number of possible trails for the case
when T2, T3 have all 8 active bytes. From the properties of the S-boxes used in
Camellia we have that each input byte difference (including the difference ff)
can go to 127 or approximately2 27 distinct output differences. Since we have
8 active input bytes in S(−1)L1

and in S(−1)R5
, there are in total 27·8 = 256

2We can approximate with 27 as one of the output differences happens twice, which means
that although we increase the number from 127 to 128, on the other hand we decrease the
probability for this difference from 2−6 to 2−7, hence the trade off is compensated. This can
easily be checked if one takes instead of bytes, 7-bit nibbles. Then the maximal differential
probability of 7x7 S-box can be 26.
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differences for S̃2 and S̃3 (see the definitions (2.19),(2.20)). As S̃2 has 8 active
bytes, the following condition has to hold:

(d1, . . . , d8) = P−1(−1)⊕ (s1
R5
, . . . , s8

R5
) (2.26)

= (0, 0, 0, 0, ff, ff, ff, ff)⊕ (s1
R5
, . . . , s8

R5
), (2.27)

where all di are non-zero. Hence, out of all 256 this condition satisfy 256 ·
(1− 1274) ≈ 256 differences, or approximately all. A similar conclusion can be
obtained regarding (2.20).

Now let us focus on (2.21),(2.22). The probability that S̃2 comply with S̃3

from (2.21) can be computed as:

1. the probability that P ·S̃3 is 8 byte difference – it is approximately 1. In the
general case, when S̃2 has i active bytes, the probability is approximately
2−8·(8−i).

2. the probability that each of the differences in 8 bytes of S̃2 and P · S̃3

comply. This is 2−8, while in the general case it is 2−i for differences in i
bytes.

Therefore, for a randomly chosen differences the probability of (2.21) is 2−8.
A similar reasoning can be applied to (2.22). Hence, out of all possible S̃2, S̃3

there are 256 · 256 · 2−8 · 2−8 = 296 differences that satisfy all four conditions.
Therefore, for T2 = T3 = (1, 1, 1, 1, 1, 1, 1, 1), the probability of the differential
is at least:

296 · 2−7(8+8+8+8) = 296 · 2−224 = 2−128 (2.28)

If we take into account all possible T2, T3 for the probability of the differential
we get:∑

i,j

2−7(8+i+j+8)Ci−4
4 · Cj−4

4 2112−8·(8−i)−8·(8−j)2−8(8−i)−i2−8(8−j)−j ≈ (2.29)

≈ 2−128 (2.30)

Thus, by Lemma 1, the size of the weak key class is 2128 ·2−128 = 1. For this
key K, the complementation property holds, i.e. KS(K⊕(−1))⊕KS(K) = −1,
and taking into account the whitening keys, we get that for any plaintext P , it
holds

EK⊕(−1)(P ) = EK(P ).

Note that the size of the weak key class is too small for any attack on the
cipher, however it is sufficient for an attack on the hash function mode of the
cipher. As a compression function, we can choose the standard Davies-Meyer
compression mode:

C(H,M) = EM (H)⊕H (2.31)

Let K be the key value for which the (−1,−1) → (−1,−1) differential in the
key schedule holds. For the compression function we get that for any H the
following holds:

C(H,K ⊕ (−1))⊕ C(H,K) = EK⊕(−1)(H)⊕H ⊕ EK(H)⊕H = 0 (2.32)
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Therefore if we can find the correct key K (which is indeed the correct message
M , as M = K in the hash mode), we can produce collisions for the compression
function of Camellia. Note, as H can be arbitrary, this leads to collisions for the
whole hash function. To find the exact value of the key K we use the conditions
(2.19)-(2.22) combined into the algorithm:

1. Create a set S̃ of all possible differences P−1(−1) ⊕ S(−1) – the size of
the set is 256

2. Create a set SR of pairs of differences (δ2, δ3), δ2, δ3 ∈ S̃ such that δ2
complies with P · δ3 and δ3 complies with P · δ2 - the size of this set is 296

3. Choose a random pair (δ2, δ3) from SR

4. Produce the value of L1 (and the corresponding F1) that converts -1 into
the δ3 ⊕ P−1(−1), i.e. S(L1 ⊕ (−1))⊕ S(L1) = δ3 ⊕ P−1(−1). As δ3 has
8 active S-boxes, and for each active S-box there are 2 different values (A
and A⊕ (−1)), for a fixed δ3 there are 28 possible values of (L1, F1)

5. Produce similarly the values of (L4, F4) from δ2

6. Produce F3 = L4 ⊕ F3 = L4 ⊕ F1, and L3 = F−1(F3). Check if F (L3 ⊕
P · δ2)⊕ F (L3) = P · δ3. If not, go to step 3

7. Produce F2 = L3, and L2 = F−1(F2). Check if F (L2 ⊕ P · δ3)⊕ F (L2) =
P · δ2. If not, go to step 3

8. Output the key (L1, R1) = (L1, F (L1)⊕ L2)

The probability of steps 6,7 is 2−56 each and there are 22(48+8) possible (L1, F1)
and (L4, F4). Hence, after repeating step 3 296 times and steps 4,5 2112 times,
one key candidate will be produced. Thus the complexity of the algorithm is
2112.

Note, with an effort of 2112 we can produce one collision for the compression
function of Camellia-128 (without FL,FL−1). As once we have the correct
message M , we can produce collision for any input chaining value, it means that
for any messages M1,M3 (the M3 block is used as message padding), we can
produce a collision for the hash function of Camellia-128 . The colliding pairs are
(M1||M ⊕ (−1)||M3) and (M1||M ||M3). Therefore, to produce q collisions with
the same fixed difference between the message words (the difference is (0||−1||0)
we need 2112 calls to the hash function3. On the other hand, for the generic case,
producing such collisions (they are indeed called differential q multicollisions,

see [3]), one needs around q2
q−2
q+2 128 calls to the hash function. Hence, producing

256 differential multicollisions requires 28 · 2 254
258 128 ≈ 2134 encryptions whereas

for the hash function of Camellia-128 without the non-linear layers FL,FL−1

in the Davies-Meyer mode, they can be produced with 2112 calls to the hash
function.

3Actually, the number is smaller, as one hash function call requires much larger number of
operations compared to the steps of our algorithm.

14



SECURITY ANALYSIS OF THE BLOCK CIPHER CAMELLIA

2.5 Applications to Camellia-192 and Camellia-
256

The key schedule for the cipher with 192 and 256 bit keys requires generation
of additional key KB . Also note that the initial difference -1 in KL and KR

would cancel at the beginning and will be introduced only after the feedback
at the beginning of the third round. This however leads to a situation where -1
cannot be obtained in KA, i.e. it is trivial to see that two rounds of the Feistel
cannot produce output difference of -1 if the input difference is -1. Hence, the
hash functions based on Camellia-192 and Camellia-256 are resistant against
this type of differential q-multicollisions.
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Chapter 3

Analysis Against Various
Attacks

In this chapter an analysis of the resistance of Camellia against different single-
key and related-key attacks is given. In particular, we focus on:

• Classical Differential Cryptanalysis

• (Amplified) Boomerang Cryptanalysis

• Truncated Differential Cryptanalysis

• Slide Attack

• Rotational Attacks

3.1 Differential Cryptanalysis

Differential attacks are the most popular form of cryptanalysis for block ci-
phers. A widely accepted approach for designing a byte-oriented cipher resis-
tant against differential attacks is to ensure that each differential characteristic
has a certain number of active S-boxes. Besides on the differential properties of
the S-boxes, this number also depends on the size of the state in the single key
scenario, and on the size of the key in the related-key scenario. In the sequel
we give the probabilities of the best differential trails based on the number of
active S-boxes.

3.1.1 Single-key Differentials

In the single-key scenario we assume there is no difference in the key, and there
is some initial difference in the plaintext. We use an advanced brute-force
approach, based on Matsui’s technique used to find the best characteristics
in DES (see [24]), to find the probabilities and the number of active S-boxes

16



SECURITY ANALYSIS OF THE BLOCK CIPHER CAMELLIA

Table 3.1: The number of active S-boxes in the best round-reduced single-key
differential characteristics for Camellia.

Rounds Active S-boxes
1 0
2 1
3 2
4 7
5 9
6 11
7 13
8 15
9 18
10 21
11 22
12 25
13 26
14 30
15 32
16 34

in the best round-reduced single-key characteristics. We use the term “best”
with regards to the characteristics with the highest probability. As mentioned
previously, Camellia uses four different type of S-boxes: the maximal differential
probability of each of them is 2−6. We use these probabilities as estimations for
the active S-boxes. The best single-key characteristics, in terms of the minimal
number of active S-boxes, are presented in Table 3.1.

As the probability of each active S-box is 2−6 and the block size is 128 bits,
to be valid a characteristic can have at most b 128

6 c = 21 active S-box. Given
the table, we can easily give upper bounds on the best differential attacks based
on differential characteristics:

Observation 2 For all key sizes of Camellia, no single-key differential char-
acteristic on more than 10 rounds can have a probability higher than 2−128.

The theory of computation of differential characteristics is far ahead of com-
puting the same probabilities of differentials. Hence, we cannot give a precise
bound on the number of rounds sufficient for resistance of Camellia against dif-
ferential attacks. However under the standard assumptions that the number of
characteristics within a differential is low and the relatively high margin for the
best characteristic on more than 10 rounds, we expect Camellia to be resistant
against single-key differential attacks.
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3.1.2 Related-key Differentials

The non-byte oriented rotations used for the generations of the subkeys make the
analysis of Camellia against related-key attacks infeasible. We have previously
analyzed Camellia against related-key attacks, by modifying the rotations and
making them all multiple of 8 (see [4]). The analysis has shown that no related-
key attacks exist for this version of the cipher. Modifying our search algorithm
and applying it to the original Camellia is possible but again infeasible. The true
problem lies in the fact that if one fixes the position of the active bytes in the
keys KL,KR,KA,KB then there are too many possible configurations for the
active bytes in the subkeys. For example, let in KL only the least significant
byte (i.e. 0 byte) is active. Then k3 = KL ≪ 15 can have active only the
second byte if the difference in the least significant bit of the active byte was
zero, only the first byte, if the difference was only in the least significant bit, or
both the first and the second if the difference was in all bits of the active byte.
Hence, for a single active byte we get three possibilities, i.e. the branching is
three. Therefore, we get that the branching is exponential in the number of
active bytes per subkey. Taking into account that there are 18 round subkeys in
Camellia-128 , we get that the search is infeasible as there are too many possible
subkeys differences for a single difference in the keys KL,KR,KA,KB .

Note, we cannot conjecture if the rotations in the subkeys make the cipher
more resistant against related-key differential attacks as unlike for the byte-
oriented version, the search for the original version is impractical. What is
interesting is the fact that due to the high branching of the active bytes in the
subkeys, indeed one can expect to get better related-key trails as the number
of possible related-key trails is much larger. Again let us reuse our previous
example with a difference in a single active byte of KL. In the (modified) byte-
oriented version, the difference in the subkey k3 is uniquely determined (it is in
the second byte). However, in the original version the difference can be in 1, or
1 and 2 or 2. Hence, when canceling the active bytes, one gets more possibilities,
i.e. the subkey can cancel the state difference of the byte 1, 1 and 2 or 2. On
the other hand, finding the exact difference for the active bytes in the keys (and
the subkeys) that follow a certain related-key differential path might not always
be possible.

The complementation property mentioned previously can also be seen as
a related-key differential attack. However, due to the low probability of the
differential in the key schedule, it poses no threat to the security of the cipher
in terms of related-key differential attack.

3.2 Boomerang Cryptanalysis

In boomerang attacks, the characteristics do not have to cover the full cipher.
Indeed, the number of rounds they cover should be chosen such that the prob-
ability of the boomerang is maximal. As we already have the probabilities of
the best round-reduced characteristics, we can easily find the probability (and
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respectively the complexities) of the best boomerang attacks.
To find the best single-key boomerang we should take into account the results

from Table 3.1. When the top characteristic is on 3 rounds and the bottom on
4 rounds, i.e. 7 rounds in total, the probability of the boomerang might be
higher than 2−128 (only under the assumption that all of the active S-boxes
hold with maximal probability of 2−128). For any other choice of rounds (with
sum greater than 7), the probability of the boomerang is lower than 2−128.
Hence, we can conclude that no boomerang exists for 8 rounds. Using some
advanced techniques, an attacker might be able to skip round at the beginning,
middle and at the end of the boomerang. However, the security margin is very
high, and therefore we can conclude that approximately 11 rounds of Camellia
are resistant against boomerang attacks. The case of amplified boomerangs
gives no advantage to the attacker, over the classical boomerangs.

3.3 Truncated Differential Cryptanalysis

In truncated differential attacks, instead of following the propagation of cer-
tain difference through the rounds of the cipher and specifying how the initial
difference changes after each transformation, the attacker only examines the
position of the bytes with differences (i.e. active bytes) through the rounds.
Hence the linear transformations in the cipher have the main and only impact
on the probability of a characteristic. To find the best round-reduced truncated
differentials we have used again Matsui’s approach combined with the following
standard assumptions:

1. S-boxes have no effect on the probability, i.e. they cannot change active
byte into non-active and vice versa;

2. XOR can cancel two active bytes with probability 2−8;

3. The matrix multiplication can produce output column with t active bytes
with probability 2−8(8−t), unless there is only one single active input byte
– then the probability is 1

We have implemented a brute force on the space of all possible truncated
differentials and our findings are presented in Table 3.2. Based on the results,
we can conclude that:

Observation 3 For Camellia, no truncated differentials exist on more than 7
rounds.

Note that the truncated differentials presented in the table have exactly
specified positions of active bytes. By relaxing some of the positions, it might
be possible to construct differentials for higher number of rounds. However,
we expect that if such differentials are achievable, then the number of rounds
they cover should not be significantly higher than 7. Taking into account the
high security margin of Camellia, we can conclude that the full round cipher is
resistant against truncated differential attacks.
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Table 3.2: The probabilities of the best round-reduced truncated differentials
for Camellia.

Rounds −log2 probability
1 0
2 24
3 48
4 64
5 80
6 104
7 120
8 136

3.4 Slide Attacks

Slide attacks are applicable to ciphers that have similar rounds. This is not the
case for Camellia due to the key schedule – each round of the Feistel in the key
schedule uses different 64-bit constant. Hence, we can conclude that Camellia
is resistant against single-key and related-key slide attacks.

3.5 Rotational Attacks

So far rotational attacks have been applied only to addition-rotation-XOR prim-
itives. To apply this type of attacks to substitution-permutations ciphers with
byte-oriented structure the rotational input pairs have to differ by multiple of
8. Though Camellia satisfies this requirement, it uses high number of round
constants in the key schedule that are not rotational. Therefore we believe
rotational attacks cannot be applied to Camellia.
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Chapter 4

Conclusion

The analysis presented in chapters 2 and 3 allows us to deduce a few conclusions
regarding the security of Camellia.

• Single-key differentials. Both standard differential trails and trun-
cated trails cover only around one half of the total number of rounds.
Even with some advanced techniques, when the attacker can pass a few
more rounds, the security margin of Camellia is high, hence the cipher is
resistant against attacks based on differential trails. We note that Camel-
lia applies standard cryptographic design techniques, and as there is no
known analysis on such ciphers showing a significant advantage of differ-
ential attacks over the attacks based on differential trails, we believe that
Camellia is secure against differential attacks as well. A similar conclu-
sion applies to the case of boomerang attacks as they are differential-based
attacks.

• Related-key differentials. Our analysis shows that finding the best
related-key trails is infeasible due to the rotations in the round keys, hence
we cannot give a precise bound on the related-key trails. We do note that
good differentials only for the key schedule of Camellia exist, however it
is unclear if they can be combined with differentials in the state to result
in a related-key attack. The complementation property of Chapter 2 is
a related-key differential, however it applies only to a modified version of
Camellia, and only in the hash functions setting.

• Other attacks. Camellia is resistant against slide attacks and rotational
attacks, as this type of cryptanalysis in the best scenario is applicable to
the cipher with a few rounds only.
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