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Abstract. This report presents a security evaluation of the Enocoro-
128v2 stream cipher. Enocoro-128v2 was proposed in 2010 and is a mem-
ber of the Enocoro family of stream ciphers. This evaluation examines
several different attacks applied to the Enocoro-128v2 design. No attack
better than exhaustive key search has been found.

1 Introduction

This report contains a security evaluation of the stream cipher Enocoro-128v2
as specified in the work order specification from CRYPTREC dated Sept 15,
2010. Security evaluations of previous versions of Enocoro, as well as the current
Enocoro-128v2 version has previously been conducted [17, 24–28, 30]. As these
results are in Japanese, these have not been available to us during our evaluation
work.

We start by giving a short description of the algorithm in Section 2. Then, the
following sections provide a summary of our findings. After some input during
the work, the different attacks have been addressed as follows.

– In Section 3 we examine the keystream produced by Enocoro-128v2 using
standard statistical tests. The NIST test suite is used.

– In Section 4 we examine generic Time-Memory-Data tradeoff attacks. Com-
plexities for recovering the internal state, as well as complexities for recov-
ering the secret key are given.

– In Section 5 we examine chosen IV attacks of differential type and also its
statistical nature.

– In Section 6 we examine the more recent chosen IV attack denoted the
maximum degree monomial test.

– In Section 7 we examine cube attacks.

– In Section 8 we examine some properties around linear distinguishing attacks
and give a biased relation in the keystream bits.

– In Section 9 we examine guess-and-determine type of attacks.

– In Section 10 we examine at algebraic attacks on the generator.

We end the report by some giving some general conclusions in Section 11. More-
over, in Sections 3-10 we also give ending conclusions for each attack.



2 Description of Enocoro-128v2

This section gives a short introduction to Enocoro, a pseudorandom number
generator (PRNG) for use in a stream cipher, related to the PANAMA con-
struction [8]. Enocoro is actually a family of generators, where a number of
parameters can give different instantiations. A first specification of Enocoro was
published in [35], which is referred to as Enocoro v1. Two versions, one for 80-bit
security and one for 128-bit security, was recommended, referred to as Enocoro-
80v1 and Enocoro-128v1. Later, a new version for 128-bit security appeared in
[3] and it is referred to as Enocoro-128v1.1.

This document considers the most recent version which is again a family
of generators referred to as Enocoro v2. The evaluation concerns an instantia-
tion for 128-bit security which is called Enocoro-128v2. It was proposed in [36]
and [37]. It can be noted that Enocoro-128v2 and Enocoro-128v1.1 differ only in
the choice of the characteristic polynomial over F8

2 and in the way initialization
is done.

The Enocoro v2 generator is a finite state machine, i.e., it contains an internal
state and two functions, one function updating the current state to a new state
and a second function producing an output from the current state. These oper-
ations occur once every time instance. Before the output is produced, a special
initialization function is applied, that from a given key and IV value places the
finite state machine in a particular state. This initialization function is in general
a very important part of the generator as the cryptanalyst can obtain several
different keystreams from using several different IV values under the same key.

The Enocoro-128v2 generator is explicitly described as follows. The generator
is byte-oriented and most variables/values are considered as bytes. The internal
memory consists of 32 bytes, together forming what we refer to as the buffer,

b = (b0, b1, . . . , b30, b31),

and two more bytes, here called the state,

a = (a0, a1).

The buffer and state will have a value for every time instance, so we can introduce
the notation ai(t) and bi(t) as the value of ai and bi at time t, respectively.

Next, we need to specify the update function and the output function. The
output function is very simple. At each time t the generator outputs one byte zt
by

zt = a1(t).

The update function is more complicated. The buffer b has a simple update as

bi(t+ 1) = bi−1(t), ∀i, i ̸= {0, 3, 8, 17},



and

b0(t+ 1) = b31(t) + a0(t),

b3(t+ 1) = b2(t) + b6(t),

b8(t+ 1) = b7(t) + b15(t),

b17(t+ 1) = b16(t) + b28(t),

where + means bitwise XOR. But the update of the state a is more advanced.
From (a0(t), a1(t)), we first compute the intermediate values

u0(t) = a0(t) + S[b2(t)],

u1(t) = a1(t) + S[b7(t)].

Then compute intermediate values(
v0(t)
v1(t)

)
=

(
1 1
1 d

)(
u0(t)
u1(t)

)
.

Finally, the next state is given as

a0(t+ 1) = v0(t) + S[b16(t)],

a1(t+ 1) = v1(t) + S[b29(t)].

Here S[x] is a byte-oriented S-box (8 bits to 8 bits), providing the nonlinearity
in the construction. The S-box S[x] is built from using a 4 bit to 4 bit S-box,
called S4, several times. For the details on how S[x] is constructed from S4,
we refer to the design document. Also, the linear transformation given by the
matrix above is denoted by L, or (v0(t), v1(t))

T = L(u0(t), u1(t)) It is a linear
transformation over F8

2 where bytes are associated with values in F8
2 through a

specific generating polynomial, also given in the design document. The value d in
the matrix is a specific element in F8

2. An overview of the keystream generation
part, as described, is given in Figure 1.

Fig. 1. Keystream generation in Enocoro-128v2.



Finally, we need to shortly introduce the initialization function. Given a 128
bit (16 byte) key k, written in bytes as

k = (k0, k1, . . . k15),

and a 64 bit (8 byte) IV value (public value) i, written in bytes as

i = (i0, i1, . . . , i7),

the initialization function should give us the starting value of the buffer b and
the state a. This is done by setting b0, b1, . . . , b15 to the k = (k0, k1, . . . k15)
value, setting b16, b17, . . . , b23 to the i = (i0, i1, . . . , i7) value and finally setting
b24, b25, . . . , b31 to some predetermined value (given in the specification docu-
ment). The state a is set to zero. Then the state update function, as described
in the keystream generation part, is applied 96 times, but with a small exception.
The exception is in the update of b0, which is now given by

b0(t+ 1) = b31(t) + a0(t) + ctr(t).

The new part, ctr(t) is a known counter value that is added, a different value
in different time instances in the initialization. The reason is to protect against
some related key attacks on the previous version, using sliding techniques [37].

We have very shortly described the Enocoro-128v2 PRNG, taking a secret 128
bit key, a public 64 bit IV value and for each such pair it produces a keystream
sequence of bytes. If we want to use it for encryption, we typically add bitwise
the keystream to the plaintext, getting the ciphertext.

3 Statistical Tests on the Keystream

Statistical tests checking the randomness of the keystream has been performed.
The test suite used was the one provided by NIST [29]. This is a set of 15 statis-
tical tests that can be applied to a bit sequence. In the context of pseudo random
generators for cryptographic purposes, it is very important to understand the
applicability of these types of tests. If the generator fails one on more tests, this
gives a clear indication that the keystream is not random and susceptible to a
distinguishing attack (and perhaps also a key recovery attack). If, on the other
hand, the generator passes all tests, this does not say much at all about the
security of the generator. The reason is that the tests do not take actual design
into account.

In the tests, 200 keystream sequences generated by a random key/IV pair
have been tested. Each sequence is 1, 000, 000 bits long. The results of the tests
are given in Table 1. The P-value can be interpreted as the probability that a
perfect random number generator would have produced a sequence less random
than the sequence that was tested. Each row in Table 1 gives the name of the
test, the number of tests that were passed out of the 200, the P-value, and the
distribution of the 200 P-values for the individual tests. As can be seen, Enocoro-
128v2 did not pass all 200 tests in any of the cases. However, as α = 0.01, this
is as expected. For an in-depth description of the tests we refer to [29].



Table 1. Results from running the NIST statistical test suite on Enocoro-128v2
keystreams. Note that some tests are run with different parameters. Only one result
for each test has been included in the table. Also note that the RandomExcursions and
RandomExcursionsVariant tests have been aborted in some cases (the number of zero
crossings are too few to give a good test.)

Statistical test Proportion P-value C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Frequency 198/200 0.196920 23 12 18 24 17 19 17 17 22 31

BlockFrequency 198/200 0.678686 20 18 23 26 20 19 25 13 18 18

CumulativeSums 198/200 0.428095 23 18 17 23 14 13 20 21 24 27

Runs 199/200 0.064822 24 18 31 18 14 15 23 27 17 13

LongestRun 197/200 0.689019 19 25 19 20 21 24 11 20 22 19

Rank 195/200 0.096578 32 17 18 28 17 14 17 22 16 19

FFT 197/200 0.080519 17 31 18 18 16 24 19 26 10 21

NonOverlappingTemplate 197/200 0.419021 20 18 29 15 24 21 18 20 13 22

OverlappingTemplate 199/200 0.202268 31 23 21 14 15 21 21 23 16 15

Universal 196/200 0.334538 18 20 18 24 24 17 21 29 12 17

ApproximateEntropy 199/200 0.534146 22 29 24 20 17 16 19 16 21 16

RandomExcursions 128/129 0.973388 12 13 14 16 11 13 11 15 12 12

RandomExcursionsVariant 128/129 0.182384 11 8 12 12 10 21 12 12 12 19

Serial 194/200 0.162606 22 28 16 25 22 20 23 19 16 9

LinearComplexity 196/200 0.437274 18 19 30 20 22 19 14 23 20 15

3.1 Conclusion

We conclude that Enocoro-128v2 keystreams pass all statistical tests in the NIST
test suite, but also emphasize that this does not say much about the security of
the stream cipher.

4 Time-Memory-Data Tradeoff Attacks

In this section we consider the generic time-memory-data tradeoff attacks on
Enocoro-128v2. Two main types of tradeoffs for stream ciphers will be con-
sidered, namely the Babbage-Golić tradeoff and the Biryukov-Shamir tradeoff.
Throughout the section N denotes the search space, T is the time complexity
in the online phase of the attack, D is the amount of data needed in the attack,
P is the time complexity in the offline (or precomputation) phase and M is the
amount of memory (storage) needed in the attack. We consider both attacks on
the internal state and on the secret key. In the general discussion, we denote the
size of the key and IV by k and iv respectively.

4.1 Attack on Internal State

We first consider attacks on the internal state of Enocoro-128v2. The one-way
function f considered in these attacks is the mapping from the logN -bit internal



state s to a logN -bit keystream,

f : {0, 1}logN → {0, 1}logN .

It is easy to generate keystream when the internal state is known, but recovering
the state from known keystream is infeasible for any secure stream cipher.

Babbage-Golić. Babbage [3] and Golić [18] independently described a simple
but powerful time-memory-data tradeoff attack on the internal state of a stream
cipher. In the precomputation phase the attacker chooses M random states and
stores the corresponding keystream for each state, i.e., the pair (s, f(s)). By
observing D logN -bit keystream blocks from the stream cipher, the table is
searched for the corresponding f(s). The table covers a fraction M/N of the
total search space and the number of keystream blocks needed in order to find
a match is geometrically distributed with an expected value of N/M . Thus we
get the tradeoff curve N = M ·D with T = D. (This is often referred to as the
birthday paradox.) The precomputation time is P = M . One typical point on
the curve is T = M = D = N1/2, which implies that the size of the state logN
should be at least twice the key size (or security claim).

Biryukov-Shamir. Another variant of this attack was described by Biryukov
and Shamir [4]. The idea was similar to the original attack by Hellman [20].
Chains using two functions f , as given above, and h, called reduction function,
are computed. The function f maps an input (state) to an output (keystream
block) and the function h maps the output to a new input. These chains are t
long and one table consists of m chains. To avoid merging chains no more rows
are computed when N = mt2. Instead t different tables are built, each using
a different reduction function h. The online time is T = t2 and the memory
required is M = mt. This gives the tradeoff curve N2 = M2T .

The Biryukov-Shamir approach takes advantage of the fact that the attacker
has access to many keystream blocks. Thus, instead of covering the complete
search space N by the tables as in the case with Hellman’s attack, only a fraction
N/D is covered by the tables and the attack is repeated D times, one time for
each observed logN -bit keystream block. Instead of building t tables as in the
Hellman case (one data point), t/D(≥ 1) tables are built instead. Searching one
data point costs time t ·t/D. Searching all D data points costs T = t2. Since only
start and endpoints are saved the amount of memory needed is M = m · t/D.
This gives the tradeoff curve N2 = D2M2T , with the restriction D2 ≤ T (since
D ≤ t). The precomputation time is P = N/D.

One point on this curve is T = M = N1/2, D = N1/4 and P = N3/4. The
time T and memory M is the same as that in the Babbage-Golić attack, but
the data complexity D is reduced while the precomputation time P is increased.
Another point on the curve is P = T = N2/3 and D = M = M1/3. Compared to
the Babbage-Golić attack, this tradeoff has smaller data and memory complexity,
but an increased precomputation and online time complexity.



Since Enocoro-128v2 has a 272-bit internal state, and a 128-bit key, we con-
clude that Enocoro-128v2 resists time-memory-data tradeoff attacks on the in-
ternal state.

Table 2. Attack complexities for a time-memory-data tradeoff attack on the internal
state. Complexities for the Babbage-Golić (BG) attack and two choices of parameters
for the Biryukov-Shamir attack (BS1 and BS2) are given. Other tradeoffs are possible.

Time-Memory-Tradeoff Attacks on the Internal State

General Enocoro-128v2 (N = 272)

BG BS1 BS2 BG BS1 BS2

P N1/2 N3/4 N2/3 2136 2204 2181

T N1/2 N1/2 N2/3 2136 2136 2181

M N1/2 N1/2 N1/3 2136 2136 291

D N1/2 N1/4 N1/3 2136 268 291

4.2 Attack on the Initialization Function

The attacks given in the previous section were applied to the initialization func-
tion in [21,22] by Hong and Sarkar. The one-way function f considered in these
attacks is the mapping from the (k+ iv)-bit key and initialization vector to the
first k + iv bits of the keystream,

f : {0, 1}k+iv → {0, 1}k+iv.

In this case N = 2k+iv. In the case of Enocoro-128v2, the key is 128 bits and
the IV is 64 bits.

Babbage-Golić. In the Babbage-Golić attack,D different key/IV pairs are used
to initialize the cipher and the first k + iv bits of the keystream are stored in a
table together with the key/IV. The table is sorted according to the keystream.
By observing 2k+iv/D keystream blocks from 2k+iv key/IV pairs, one of these
pairs is expected to be found in the table. As an example, it is possible to mount
a time-memory-data tradeoff attack of this kind with 296 memory words and
observing keystream from 296 key/IV pairs.

Biryukov-Shamir. In the Biryukov-Shamir attack, a reduction function is used
to map a keystream block to a new key/IV pair. A new reduction function is
used for each table. Tables covering in total N/D key/IV pairs are computed



and, for each data point, the tables are searched. As an example, with precom-
putation time 2144, memory 296, online time 296 and 192-bit keystream blocks
corresponding to 248 key/IV pairs, it is expected to recover one of these key/IV
pairs.

Some typical attack complexities for these attacks are summarized in Table 3.

Table 3. Attack complexities for a time-memory-data tradeoff attack on the initial-
ization function when 0%, 50% and 100% of the IV can be controlled by the attacker.
Complexities for the Babbage-Golić (BG) attack and two choices of parameters for the
Biryukov-Shamir attack (BS1 and BS2) are given. Other tradeoffs are possible.

Time-Memory-Tradeoff Attacks on the Initialization Function

General
Enocoro-128v2 (N = 192)

No IV Control 50% IV Control Full IV Control

BG BS1 BS2 BG BS1 BS2 BG BS1 BS2 BG BS1 BS2

P N1/2 N3/4 N2/3 296 2144 2128 280 2120 2107 264 296 285

T N1/2 N1/2 N2/3 296 296 2128 280 280 2107 264 264 285

M N1/2 N1/2 N1/3 296 296 264 280 280 253 264 264 243

D N1/2 N1/4 N1/3 296 248 264 280 240 253 264 232 243

4.3 Other Notes On the Time-Memory-Data Tradeoff Attacks

In a chosen IV scenario, the IV can be fixed when building the tables for these
attacks. In that case, N = 2k. Even if the IV can not be completely chosen,
it might be the case that some part of the IV is fixed and/or known to the
attacker beforehand. This will significantly improve the attack numbers above.
As a comparison, in Table 3, we also give the corresponding figures for P,M, T
and D when both half the IV and the full IV can be chosen or predicted by the
attacker. The applicability of these figures is of course dependent on the usage
scenario and how IVs are chosen.

Note that there are important fundamental differences between the attacks
on the internal state and the attacks on the initialization function. The attack on
the internal state can be used to break a stream cipher that uses one particular
key and IV. It is keystream from this key and IV that is used in the attack. If the
state update function and the initialization function are invertible, then this will
also recover the key and IV. The attack on the initialization function recovers
the key and IV for the particular keystream that is used. Only one keystream



is used for each key/IV pair. Thus, this attack requires keystreams from many
different key/IV pairs and only recovers one such pair.

The fact that the IV is assumed to be publicly known was taken advantage
of by Dunkelman and Keller in [11]. They create separate tables for different
selected IVs. When a keystream with a selected IV is observed, only the corre-
sponding table(s) are searched. This gives the same tradeoff as in the Biryukov-
Shamir attack, but does not have the restriction D2 ≤ T .

4.4 Conclusions

The internal state of Enocoro-128v2 is 272 bits. Thus, there is no time-memory-
data tradeoff attack on the internal state that has time, memory and data less
that 2128. An exhaustive key search will always be more efficient than an online
phase in a TMDTO attack.

The relatively short IV (64 bits) makes Enocoro-128v2 more susceptible to
time-memory-data tradeoff attacks on the initialization function. There are sev-
eral possibilities to mount these attacks with time, memory and data less that
2128. Still, the precomputation time is equal to or larger than exhaustive key
search if data and/or memory is to be decreased. Additionally, only one out of
several key/IV pairs can be recovered. If an attacker can choose the IV, the
complexities for recovering one out of 264 keys are rather moderate. This has
nothing to do with the IV length, but is a result of the 128-bit key.

5 Chosen IV Attacks

By chosen IV cryptanalysis we mean attacks that targets the initialization of the
cipher. These attacks typically use a number of keystream sequences generated
from the same key but using initialization with different IV values [9]. We can
also consider a number of keystream sequences generated from the different
but related keys and possibly using initialization with different IV values. This
gives related key attacks. In this section, let i0, i1, . . . , im−1 be the IV bits,
k0, k1, . . . , kn−1 be the key bits and let zi be the ith keystream bit. Note that we
consider bits instead of bytes in the notation in this section! Then we can write
zi as a function of key and IV bits,

zi = fi(i0, i1, . . . , im−1, k0, k1, . . . , kn−1) ij ∈ I kj ∈ K.

The basic assumption is the knowledge of z = z0, z1, . . . for a number of
different IV values (i0, i1, . . . , im−1) ∈ I, for some set I.

We consider a few possible attacks under this assumption. One is a differential
attack to be described next. Another one is pure statistical testing, described in
Subsection 5.2. A final one is another statistical testing tool based on the max
degree test to be described in Section 6.



5.1 Differential Chosen IV Attacks

A differential attack on the initialization treats Enocoro-128v2 as a 96 round
function and studies how differences in the input, in this case IV bits and pos-
sibly key bits, propagates through the 96 rounds and eventually appears in the
keystream bits.

Recalling the initialization of Enocoro-128v2, we see that key bits set the
state byte b0 up to b15 and IV bits set the state byte b16 up to b23. Let us
introduce the notation

Y (t) = (b0(t), b1(t), . . . , b31(t)|a0(t), a1(t))

for the full state after t round (clockings). Furthermore let us consider the dif-
ference between the generation of any two sequences. We have a sequence of
state values Y (t) when generating the first keystream and another sequence of
state values Y ′(t) when generating the second keystream. Furthermore, the XOR
difference between them is denoted δY (t), i.e.,

δY (t) = Y (t) + Y ′(t).

A promising differential attack could be if we start with a single differential in
the second IV byte, i.e., in the b17 state variable. Then we will have a propagation
of the differential as

δY (0) = (0000000000000000a00000000000000|00),

going to
δY (12) = (000000000000000000000000000a000|00),
δY (13) = (000000000000000a000000000000a00|00).

Next, the difference in b29 goes through an S-box to a1 as well as shifting one
step. The difference after the S-box is now a new nonzero value b. We reach

δY (14) = (0000000000000000a000000000000a0|0b).

Next, the difference in a0, a1, δ(a0, a1) = (0, b) is transformed to δ(a0, a1) =
(b, c = d · b),

δY (15) = (00000000000000000a000000000000a|bc).

This approach would lead to a successful attack if we could cancel out the differ-
ences in b31, a0, a1 in the next step. However, since the update of a0, a1 is linear,
it is not possible to reach δ(a0, a1) = (0, 0) in the next step, and the probability
to reach

δY (16) = (000000000000000000a000000000000|00)
is zero. This shows that the linearity in the (a0, a1) update is crusial. If the
update would be nonlinear there would likely be some positive probability for
reaching Y (16) as above. The procedure could be repeated to reach a large
number of rounds, perhaps all 96.

Note that this kind of analysis is strongly related to the search for colli-
sions for hash functions. We have tried to examine more complicated differential
patterns but not been able to find any promising such patterns.



5.2 Statistical Testing in Chosen IV Attacks

Basic statistical testing on the keystream sequence is a very simple and usually
not very succesful approach, if the initialization is designed carefully.

Again, we generate a few keystream bits z = z0, z1, . . . for a number of
different IV values (i0, i1, . . . , im−1) ∈ I, for some set I. Let us enumerate the n
bit strings of keystream generated from different IVs as

z0, z1, . . . , zm−1.

This can be considered as m samples drawn from a distribution D on bit strings
of length n. If we can find a statistical test that with a large probability shows
that D is not the uniform distribution, we have a distinguisher.

We run several simulations generating m different output strings of length n
for a fixed key and then apply the set of statistical tests provided by NIST [29]
on the output.

Table 4 gives a summary of the results when applying one such test. In
this test we generated 1 byte (n = 8) from 1, 000, 000 initializations with fixed
key and random IV. This was done for 200 random keys. The table should be
interpreted similar to Table 1.

Table 4. Results from running the NIST statistical test suite on initializations with
Enocoro-128v2. Note that some tests are run with different parameters. Only one result
for each test has been included in the table. Also note that the RandomExcursions and
RandomExcursionsVariant tests have been aborted in some cases (the number of zero
crossings are too few to give a good test.)

Statistical test Proportion P-value C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Frequency 197/200 0.118812 21 29 26 12 12 19 16 23 23 19

BlockFrequency 196/200 0.296834 19 15 13 27 23 23 14 18 24 24

CumulativeSums 195/200 0.036352 24 26 24 16 11 16 18 15 18 32

Runs 198/200 0.118812 15 22 15 19 25 30 18 21 24 11

LongestRun 199/200 0.242986 16 22 26 26 14 26 20 21 16 13

Rank 199/200 0.112047 13 21 33 18 16 21 19 16 18 25

FFT 197/200 0.249284 21 28 19 20 13 28 16 18 22 15

NonOverlappingTemplate 198/200 0.960198 21 22 19 21 17 21 25 16 20 18

OverlappingTemplate 195/200 0.057146 24 30 20 28 17 12 19 22 14 14

Universal 200/200 0.055361 20 14 24 20 15 9 29 26 24 19

ApproximateEntropy 197/200 0.202268 18 24 28 19 25 18 16 15 12 25

RandomExcursions 173/174 0.679903 19 20 21 19 17 14 18 21 10 15

RandomExcursionsVariant 174/174 0.716158 14 13 15 14 19 22 16 19 20 22

Serial 197/200 0.788728 20 18 22 13 21 26 22 18 22 18

LinearComplexity 199/200 0.875539 22 22 18 21 13 21 24 17 21 21



5.3 Conclusion

Neither differential chosen IV attacks, nor pure statistical testing in a chosen IV
setting give attacks that have potential. A differential attack would be powerful
if a differential in the (a0, a1) update could be cancelled, but this is not possible
due to the linearity of the (a0, a1) update. Generic statistical tests using the
NIST test suite did not show any deviations from random when considering a
few keystream bits from initialization with a random IV and fixed key.

6 Maximum Degree Monomial Test

The maximum degree monomial test can be used to check if all Key/IV bits
are properly mixed into the state in the initialization round. The initialization
procedure is seen as a Boolean function. The input to the Boolean function is
a set of key/IV bits and the output is the first keystream bit. It is possible to
consider also other keystram bits but as more keystream is generated, key/IV
bits are mixed into the state even further. Let I be the set of all IV bits, K be
the set of all key bits and let z0 be the first keystream bit. Then we look at the
function

z0 = f(i0, i1, . . . , im−1, k0, k1, . . . , kn−1) ij ∈ I kj ∈ K.

The idea of the test is to look at the coefficient of the monomial of highest
degree in the Boolean function., i.e., the monomial i0i1 . . . im−1k0k1 . . . kn−1. In
a random Boolean function, this coefficient should be 1 with probability 0.5. The
idea is to find a subset of key/IV bits, for which this coefficient is 0 with very
high probability. If only IV bits are used, this will give a chosen IV distinguishing
attack. If key bits are used as well, we can not relate this to any attack, since
an attacker is in general not allowed to choose the value of specific key bits.
However, it will still indicate a nonrandomness property in the stream cipher,
which might potentially be exploited in another attack setting.

Looking at the statistics of monomials of a certain degree d was first proposed
by Filiol in [16]. It was used by Saarinen to attack eSTREAM ciphers in [32].
Looking at the maximum degree polynomial was proposed by Englund, Turan
and Johansson in [13]. Finding the coefficient for the maximum degree monomial
of a Boolean function can be very easily done by just XORing all entries of the
truth table, i.e., the coefficient is given by∑

i0,i1,...,im−1,k0,k1,...,kn−1∈{0,1}n+m

f(i0, i1, . . . , im−1, k0, k1, . . . , kn−1),

summing over F2. The complexity of finding the coefficient of the maximum
degree monomial is exponential in the number of chosen key/IV bits. Finding
the best subset of n+m key/IV bits is an open problem. One method was given
in [33]. For a very small number of bits an exhaustive search is possible. The
idea was to use a greedy algorithm. The best subset of a bits is used as a starting



point when determining the subset of a+b bits. The complexity of this algorithm
for the chosen IV distinguishing attack is given by(

|I|
i

)
+

m+n∑
j=0

(
|I| − i− j · b

b

)
and for a nonrandomness detector the complexity is given by(

|I|+ |K|
i

)
+

m+n∑
j=0

(
|I|+ |K| − i− j · b

b

)
.

The greedy bit determining algorithm has been shown to give very good results
on e.g., Grain-128 and Trivium. This algorithm has been applied to Enocoro-
128v2. We have put i = 1 and performed the maximum degree monomial test
using the greedy bit set algorithm for b = 1, b = 2 and b = 3. We have also
performed the test for both n = 0, corresponding to a chosen IV distinguishing
attack and for n = 128, corresponding to a nonrandomness test.

The test is performed as follows. The initialization procedure of Enocoro-
128v2 has been modified such that it will output 8 bits in each initialization
round. These bits are saved in a vector x. Thus, the first 8 in the vector corre-
spond to the first keystream byte if 0 initialization rounds were used, the next
8 bits in x correspond to the first output byte if 1 initialization round was used
and so on. All vectors x, each corresponding to one choice of the a+ b bits in the
key/IV are XORed and the number of starting zeroes in the resulting vector is
counted. The full initialization of Enocoro-128v2 is 96 rounds, i.e., 96 · 8 = 768
bits are suppressed in the initialization. The key/IV bits that are not used in the
test are fixed to 0. Results are given in Table 5. Figures 2 and 3 gives a graphical
overview of the performance of the test.

6.1 Conclusion

The initialization function of Enocoro-128v2 has high resistance against the max-
imum degree monomial test. A chosen IV distinguishing attack against 21 initial-
ization rounds has been identified. It should be noted that the key bits and the
remaining IV bits were fixed to 0 in this test. Previous results on Grain-128 and
Trivium suggests that this is the most advantegous choice from the attacker’s
point of view. For a random key, the attack should be slightly worse.

It is possible to consider several other variants of this attack. Instead of
looking at the full 8-bit word we could consider only one bit in the word. Also
any linear combination of the bits in a byte can be targeted. Depending on the
strategy, it is likely that the attack could be improved by a few rounds. However,
the full initialization of 96 rounds make a comfortable security margin against
this attack.

7 Cube Attacks

Cube attacks have been proposed in [10] and has been used in e.g., [1,2]. A very
similar attack is the AIDA attack proposed by Vielhaber in [34].



Table 5. Results for the maximum degree monomial test. The maximum number of
leading zeroes in the XOR of all vectors x, the size of the bit set that gave the maximum
number of leading zeroes, the bits in the bit-set and the maximum size of the tested
bit sets are given.

Leading Zeroes (%) Bit-set size Bit-set Max Size

b = 1 178/768 (23.2%) 20 12, 7, 23, 18, 16, 30, 19,
38, 31, 39, 20, 32, 37, 17,
29, 22, 21, 57, 41, 14

30

Dist b = 2 180/768 (23.4%) 19 12, 7, 23, 28, 46, 17, 22,
36, 38, 16, 18, 19, 43, 20,
21, 5, 15, 29, 55

23

b = 3 174/768 (22.7%) 19 12, 18, 34, 46, 9, 17, 30,
20, 23, 31, 11, 14, 25, 21,
26, 27, 16, 19, 22

19

b = 1 161/768 (21.0%), 26 Key bits: 2, 69, 77, 44,
31, 126, 62, 61, 5, 122
IV bits: 12, 32, 28, 25,
16, 21, 10, 8, 26, 9, 23,
30, 42, 38, 39, 11

26

NR b = 2 162/768 (21.09%) 3 Key bits: 61, 115
IV bits: 12

23

b = 3 166/178 (21.61%) 4 Key bits: 35, 122
IV bits: 12, 1

16
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Fig. 2. Plots showing the number of initialization rounds that fails the maximum degree
monomial test for a given bit-set size. Only IV bits are allowed in the greedy algorthm
(corresponding to a chosen IV distinguishing attack). 178 leading zero bits correspond
to a possible distinguishing attack on 21 initialization rounds of Enocoro-128v2, since
after 21 rounds, bits 169− 176 are output.
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Fig. 3. Plots showing the number of initialization rounds that fails the maximum degree
monomial test for a given bit-set size. Both key and IV bits are allowed in the greedy
algorithm. Note that this plot is worse than the case when only IV bits are used. This
is an artifact of the greedy algorithm. If all bit selection choices were tested the result
would have been at least as good as in the case when only IV bits were chosen.

The idea of cube attacks shares several properties of the maximum degree
monomial test, or more generally, a d-monomial test. Instead of iterating over
all bits in a set in order to find the coefficient, which is zero or one depending on
if the monomial is present in the Boolean function, we only iterate over a subset
of the bits. In that case the coefficient can be an expression in key/IV bits
instead. In particular, if this expression is a linear function of key bits, knowing
the coefficient can help recovering the key by solving a set of equations. The
resistance against the maximum degree monomial test, indicate that Enocoro-
128v2 has strong resistance also against the cube attacks.

7.1 Conclusion

We have not found any way of mounting cube attacks on Enocoro-128v2. More-
over, the resistance against these attacks seems strong due to the large number
of initialization rounds in the stream cipher.

8 Linear Distinguishing Attacks

8.1 Background

The generator should efficiently produce random-looking keystreams that are
as “indistinguishable” as possible from true randomness. We always assume
a known-plaintext attack (or chosen-plaintext or chosen-ciphertext), which is
equivalent to having access to the keystream z = z0, z1, z2, . . .. So we assume
that an output sequence z is known. We can then try to perform different types
of attacks. One is a key recovery attack, trying to recover the value of the secret



key K. Here we consider instead a distinguishing attack:, when we try to deter-
mine whether a given sequence z = z0, z1, z2, . . . is likely to have been generated
from the considered stream cipher or whether it is just a truly random sequence.
A distinguisher is an algorithm (or a black box) that takes (at least) the given
sequence as an input and with high probability answers the above question cor-
rectly. We refer to standard literature for more details on why distinguishing
attacks are a weakness for a cipher.

Let D(z) be an algorithm that takes input z and as output gives one out of
two possible answers, either “X” or “RANDOM”. Assume the sequence z is either
produced by the generator or that it is a purely random sequence (both occuring
with the same probability). The probability that D(z) correctly determines the
origin of z is written (1 + ε)/2. If ε is not very close to zero we say that D(z)
is a distinguisher and we have a distinguishing attack on the generator. It is
standard to introduce the advantage of a distinguisher D, AdvD, as

AdvD = |P (D(z) = X|z generated by X)− P (D(z) = X|z truly random)|.

In terms of ε as above, the advantage is simply written AdvD = |ε|.
This basic scenario can be generalized to include several keystreams produced

from different known or possibly chosen IVs.
A distinguisher should detect some behavior that appears to be nonrandom.

A first and basic approach is to apply various statistical tests on the received
keystream z. This has been done in previous sections where special statistical
packages have been used to analyze the output of a generator and check if there
is some statistical property that looks suspicious. These approaches may detect
statistical weaknesses in some weak generators but they are not too powerful
in general. The problem is that the tests are generic and not targeted towards
the considered cipher. Stronger attacks may be achieved if we take the internal
structure of the cipher into account, when we design a distinguisher.

In essence, we would try to detect a statistical deviation in the keystream
z based on some internal relationship. However, symbols in z (or even small
blocks of symbols) will often be very close to the uniform distribution. Instead,
the internal relationship often gives dependence among different zi symbols that
can be far apart in time. So it is natural that we transform our keystream z
into a new sequence of symbols, called samples, denoted by x = x0, x1, x2, . . ..
In general, this can be done in almost any way,

xi = F (i, z), i = 0, 1, 2, . . .

where F is some function. With a given sample sequence, we would finally try
to distinguish if x behaves as if generated from a truly random z or not.

A common type of distinguishers, linear distinguishers, select F as a linear
function, i.e., the samples are selected as linear combinations of keystream bits.
Usually, the samples are regarded as independent and the distinguisher examines
whether the sample values are consistent with a uniform distribution or not.

Continuing, we need to find a suitable way to transform the keystreams to a
sample sequence x. Once the sample sequence is given, we apply statistical tools



to analyze which distribution the sample sequence follows, and hence the answer
is given by the distinguisher.

We do not give the details about the statistical tools we use. These can be
found in many places, e.g. [19].

8.2 Linear Approximations in Enocoro-128v2

We adopt the following strategy. We linearize the cipher by replacing nonlinear
blocks with linear ones. We try of course to use the linear approximations that
give the best attack. The approximation of a nonlinear block can be modeled
as replacing it with some linear block together with some added noise. As a
second step we find a linear relationship among keystream symbols, where the
relationship involves as few approximated blocks as possible.

If the linear relationship is written as

xt =
k∑

j=0

cjzt+j

then xt = 0 if no approximation was done. However, since linear approximations
were introduced we can instead write xt as a sum of noise variables. The noise
is usually nonuniformly distributed, and so is then often the sum of them. If we
denote this distribution by P0, then the samples are distributed according to
P0 in the cipher case. In the other case, samples are uniformly distributed (P1).
Hypothesis testing is used to distinguish between the two distributions.

For Enocoro-128v2 we note that the cipher is byte-oriented, so it makes sense
to initially assume that symbols are bytes, or belonging to the field of 28 elements
F8
2. We also note that the only nonlinear operation in the cipher is the S-box.

The L transformation is linear in F8
2. The linear approximation of s8 is then

written as

S[x] = αi,tx+Ni,t,

where 0 ≤ i ≤ 3 and t ≥ 0. Here αi,t is some arbitrary constant that fixes
a certain linear approximation for the S-box considered and Ni,t is the noise
introduced by the linear approximation. The more nonrandom noise, the better
approximation in general. Also, there are four S-boxes in every time instance, so
i determines which S-box we consider. Finally, approximations can be done in
any time t.

In order to proceed with the linear distinguishing attack we write the keystream
bytes zt+i as a function of the state bytes at time t, denotedB0, B1, B2, . . . , B31, A0,
as follows.



zt+1 = A0 + S[B2] + d ∗ zt + d ∗ S[B7] + S[B29],

zt+2 = A0 + S[B2] + zt + S[B7] + S[B16] + S[B1] + d ∗ zt+1 + d ∗ S[B6] +

+S[B28],

zt+3 = A0 + S[B2] + zt + S[B7] + S[B16] + S[B1] + zt+1 + S[B6] +

+S[B15] + S[B0] + d ∗ zt+2 + d ∗ S[B05] + S[B27],

zt+4 = A0 + S[B2] + zt + S[B7] + S[B16] + S[B1] + zt+1 + S[B6] +

+S[B15] + S[B0] + zt+2 + S[B5] + S[B14] + S[B31 +A0] +

+d ∗ zt+3 + d ∗ S[B4] + S[B26],

zt+5 = A0 + S[B2] + zt + S[B7] + S[B16] + S[B1] + zt+1 + S[B6] +

+S[B15] + S[B0] + zt+2 + S[B5] + S[B14] + S[B31 +A0] + zt+3 +

+S[B4] + S[B13] + S[B30 +A0 + S[B2] + zt + S[B7] + S[B16]] +

+d ∗ zt+4 + d ∗ S[B3] + S[B25],

...
...

Continuing in this way we can write any keystream byte in a similar fashion.
The strategy in our linear distinguisher is now to approximate an S-box as a
linear function with some added noise, as described above. Since there are in
total 33 unknown variables, writing 34 such equations will always allow us to
write a sum of keystream bytes as a sum of only noise variables. This will result
in a distinguisher for the keystream. The sum of keystream bytes gives us one
(biased) sample xi. Using a sequence x of samples, a hypothesis test can be
performed. The strength of the distinguisher is then measured as the number of
samples required in order to make a reliable decision in the hypothesis test, i.e.,
the number of samples such that the error probability in the test is lower than
0.5. The number is samples is approximately 1/ϵ2, where ϵ is the bias of the
samples. The factors that determine the bias is the bias of the approximation of
the S-box and the number of S-boxes that has to be approximated.

The bias of the noise introduced by a linear approximation of an S-box will
depend on the which approximation is used. Since we are in the field F8

2 there
are 28−1 nonzero approximations of the S-box (the noise from the zero approxi-
mation does not have a bias since the S-box is a bijection). Tables 6 and 7, given
in the Appendix, gives the bias for each approximation. We compute the bias as

ϵ =

256∑
i=0

|Pr[i]− 1

256
| (1)

where Pr[i] is the probability that the noise takes the value i ∈ F8
2. This equation

for the bias is accurate if Pr[i] is close to 1/256 for each i. In order to get an
accurate value we give the bias for the XOR sum of 16 distributions in the tables.
Studying these values we can conclude that



1. There is no one approximation that is significantly better than other approx-
imations.

2. The best approximation is given by the polynomial 0x78.

We take a somewhat simplified approach, namely that an S-box multiplied
by the factor 1 is approximated by the identity function and that an S-box
multiplied by the factor d = α = 0x02 is approximated by the factor d−1 =
α254 = 0x8e. Then each state bit in the equations, after approximations has
been done, will have the constant factor 1. In the resulting expression we will
have three possibilities for the noise variables.

1. A noise variable occurs once, stemming from an approximation by 1.
2. A noise variable occurs once, stemming from an approximation by d−1.
3. A noise variable occurs twice, once from each approximation. This corre-

sponds to an approximation by (1 + d)−1 = α230 = 0xf4.

Following the approach described above, we tested different possibilities for
the attack. One possible distinguisher is given by the biased sum

0 = zt + zt+1 + zt+4 + zt+6 + zt+8 + zt+12 + zt+13 + z18 + zt+21 + zt+22 +

zt+24 + zt+25 + zt+28 + zt+32 + z33 + z34 + d · zt + d · zt+1 + d · zt+3 +

d · zt+5 + d · zt+8 + d · zt+12 + d · zt+15 + d · zt+16 + d · zt+17 + d · zt+21 +

d · zt+24 + d · zt+28 + d · zt+32 + d · zt+33

The bias for this distinguisher is ϵ = 2−180 which means that the number
of samples, and the amount of keystream bytes, required in order to distinguish
the biased sequence from a completely random sequence is in the order of 2360.
All other biased sums of keystream bytes that we found required more samples
(and keystream) than this.

8.3 Conclusion

The number of keystream bytes needed in the most efficient distinguishing attack
found by our method is about 2360. Even though it is likely possible to find
better attacks by looking at other equations and thus, other combinations of
keystream bytes, this number indicates that Enocoro-128v2 has a comfortable
security margin for this attack. Looking at other approximations of the S-boxes
than the ones we used could also improve the attack, but probably only slightly.
We have noted that if we XOR different distributions, the bias of this sum
has a significantly smaller bias than if we XOR the same distribution. As an
example, taking the XOR of the 16 distributions resulting from approximating
16 S-boxes by 0x01, 0x02, . . ., 0x16 respectively would have the bias ϵ = 2−62.48,
as compared to values around 2−35 (see Tables 6 and 7) when taking the XOR
of the same distribution.

We can note that there might be better ways to construct biased sums of
keystream bits, different from our method. It might be possible to find biased
relations involving keystream bits that are very far apart, exploiting some inter-
nal property of the generator. However, we have not found any way of doing this.
According to our analysis, Enocoro-128v2 resists linear distinguishing attacks.



9 Guess-and-Determine Attacks

In a guess-and-determine attack, the contents of some state variables are guessed
during the process. Based on this guess, the contents of other state variables are
determined. The basic idea is quite trivial, but finding the best procedure of
guessing and determining state variables in order to achieve minimum compu-
tational complexity can be quite complicated.

A first attempt to attack Enocoro-128v2 in this fashion is described as follows.
We assume we know the (a0, a1) variables all the time. In order to keep this true,
we need to guess the contributions from the S-boxes. Assume that the initial
state is (B0, B1, . . . , B31) in the buffer and (A0, A1) for the state a. By ĉ we
simply mean a known value is added to c. We proceed a few steps. We start with
a0(0) = A0, a1(0) = z0 and a buffer

[B0, B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11, B12, B13, B14, B15,

B16, B17, B18, B19, B20, B21, B22, B23, B24, B25, B26, B27, B28, B29, B30, B31]

As we have a1(0) = z0 we know A1 and guess only A0. In order to be able to
compute the next state a we need to guess values from four S-boxes, i.e., we guess
B2, B7, B16, B29. As a1(1) = z1 this gives us one equation in guessed variables
that must hold, so in total we guess A0 and three buffer bytes, or 4 bytes. This
gives us a known a(1) with a1(1) = z1 and an updated buffer containing

[B̂31, B0, B1, B̂6, B3, B4, B5, B6, B̂15, B8, B9, B10, B11, B12, B13, B14,

B15, B̂28, B17, B18, B19, B20, B21, B22, B23, B24, B25, B26, B27, B28, 0̂, B30]

Again, to be able to derive a(2), we need to guess the S-boxes S[B1], S[B6],
S[B15], S[B28], i.e., B1, B6, B15, B28. Then a1(2) = z2 gives us one equation, so
the total number of guessed variables is now 7 and the buffer state is

[B̂30, B̂31, B0, B̂5, 0̂, B3, B4, B5, B̂14, 0̂, B8, B9, B10, B11, B12, B13,

B14, B̂27, 0̂, B17, B18, B19, B20, B21, B22, B23, B24, B25, B26, B27, 0̂, 0̂].

In the next step, we proceed as before and guess B0, B5, B14, B27. With one
equation we reach 10 guessed bytes, known a(3) and a buffer at time 3 with
content

[0̂, B̂30, B̂31, B̂4, 0̂, 0̂, B3, B4, B̂13, 0̂, 0̂, B8, B9, B10, B11, B12,

B13, B̂26, 0̂, 0̂, B17, B18, B19, B20, B21, B22, B23, B24, B25, B26, 0̂, 0̂].

One more step gives guesses on B31, B4, B13, B26, a total of 13 guessed bytes
and at time 4 a known a(4) and buffer

[0̂, 0̂, B̂30, B̂3, 0̂, 0̂, 0̂, B3, B̂12, 0̂, 0̂, 0̂, B8, B9, B10, B11,

B12, B̂25, 0̂, 0̂, 0̂, B17, B18, B19, B20, B21, B22, B23, B24, B25, 0̂, 0̂].



In the next step, one possibility is to skip guessing buffer values and just
guess the next a0 value, the reason being that known values are used as input
to two S-boxes in the next step. So we would assume a given value on a0(5),
which is a function of B30, B3, B12. An equation connects the output a1(5) = z5
to B30, B3, B25. Notice that we here have two known equations that are not
explored at this point!

This gives 14 guessed bytes and a known a(5) and the buffer is

[0̂, 0̂, 0̂, B̂30, B̂3, 0̂, 0̂, 0̂, B3 +B11, B̂12, 0̂, 0̂, 0̂, B8, B9, B10,

B11, B12 +B24, B̂25, 0̂, 0̂, 0̂, B17, B18, B19, B20, B21, B22, B23, B24, B25, 0̂].

Now the inputs to S-boxes taken from position 2 and 7 are known. So only
two values need to be guessed, B11, B24. But one equation from the output z6
makes this only one byte guess and the total number of guessed bytes is 15. The
buffer is

[0̂, 0̂, 0̂, 0̂, B̂30, B̂3, 0̂, 0̂, B̂10, B̂3, B̂12, 0̂, 0̂, 0̂, B8, B9,

B10, B̂23, B̂12, B̂25, 0̂, 0̂, 0̂, B17, B18, B19, B20, B21, B22, B23, 0̂, B25].

We can now continue guessing values. Obviously, we now get a complexity
that is higher than exhaustive key search. But it is still of interest to see how
good such an approach can be. So continuing, we see again that guessing B10, B23

together with the output equation adds one more guessed byte, 16 bytes in total,
a known value of a(7) and buffer

[B̂25, 0̂, 0̂, 0̂, 0̂, B̂30, B̂3, 0̂, B̂9, 0̂, B̂3, B̂12, 0̂, 0̂, 0̂, B8,

B9, B̂22, 0̂, B̂12, B̂25, 0̂, 0̂, 0̂, B17, B18, B19, B20, B21, B22, 0̂, 0̂].

Next, B9, B22 are guessed, giving 17 guessed bytes, known a(8) and buffer at
time 8 being

[0̂, B̂25, 0̂, B̂3, 0̂, 0̂, B̂30, B̂3, B̂8, 0̂, 0̂, B̂3, B̂12, 0̂, 0̂, 0̂,

B8, B̂21, 0̂, 0̂, B̂12, B̂25, 0̂, 0̂, 0̂, B17, B18, B19, B20, B21, 0̂, 0̂].

At some point we may stop guessing variables, and collect a number of
equations to process. At this point we could express the new a0 as a0(9) =
ℓ(S[B̂3], S[B8]) and a1(9) = z9 = ℓ(S[B̂3], S[B21]), where ℓ() denotes an affine
function of some variables. Then the buffer at time 9 can be written

[0̂, 0̂, B̂25, B̂30, B̂3, 0̂, 0̂, B̂30, B̂3, B̂8, 0̂, 0̂, B̂3, B̂12, 0̂, 0̂,

0̂, B8 +B20, B̂21, 0̂, 0̂, B̂12, B̂25, 0̂, 0̂, 0̂, B17, B18, B19, B20, B21, 0̂].

Note that we have one unexplored equation from z9 = ℓ(S[B̂3], S[B21]).
In the next time instance we can write a0(10) = ℓ(S[B̂3], S[B8], S[B̂25], S[B̂30])

and a1(10) = z10 = ℓ(S[B̂3], S[B8], S[B̂25], S[B̂30], S[B20]). The buffer at time 10
is

[a0(9), 0̂, 0̂, B̂25, B̂30, B̂3, 0̂, 0̂, B̂30, B̂3, B̂8, 0̂, 0̂, B̂3, B̂12, 0̂,

0̂, B̂19, B8 +B20, B̂21, 0̂, 0̂, B̂12, B̂25, 0̂, 0̂, 0̂, B17, B18, B19, B20, B21].



In the next step, all S-box contributions but B19 are known, so a0(11) is
as a0(10), i.e., a0(11) = ℓ(S[B̂3], S[B8], S[B̂25], S[B̂30]) and a1(11) = z11 =
ℓ(S[B̂3], S[B8], S[B̂25], S[B̂30], S[B19]). The buffer at time 11 is

[B21 + a0(10), a0(9), 0̂, 0̂, B̂25, B̂30, B̂3, 0̂,

0̂, B̂30, B̂3, B̂8, 0̂, 0̂, B̂3, B̂12,

0̂, B̂18, B̂19, B8 +B20, B̂21, 0̂, 0̂, B̂12,

B̂25, 0̂, 0̂, 0̂, B17, B18, B19, B20].

In the next step, the first two inputs to the S-boxes are given, so a0(12) is
given from a0(11) or a0(12) = ℓ(S[B̂3], S[B8], S[B̂12], S[B̂25], S[B̂30]) and a1(12) =
z12 = ℓ(S[B̂3], S[B8], S[B̂25], S[B̂30], S[B18]). The buffer at time 12 is

[B20 + a0(11), B21 + a0(10), a0(9), B̂3, 0̂, B̂25, B̂30, B̂3,

B̂12, 0̂, B̂30, B̂3, B̂8, 0̂, 0̂, B̂3,

B̂12, B̂17, B̂18, B̂19, B8 +B20, B̂21, 0̂, 0̂,

B̂12, B̂25, 0̂, 0̂, 0̂, B17, B18, B19].

In the next step, two inputs to the S-boxes are given, so we can write a0(13) =

ℓ(a0(12), S[ ˆa0(9)]) and a1(13) = z13 = ℓ(S[ ˆa0(9)], S[B̂3], S[B8], S[B̂12], S[B̂25],
S[B̂30], S[B17]).

Now the expressions in the next output byte z14 will include a more compli-
cated expression. Without processing this to a detailed end, it looks like a few
more guessed bytes are needed to reach a unique state value. This would prob-
ably allow a quick recovering of the remaining part of the buffer but result in
20-22 guessed bytes in total, or a complexity of at least 2160. A better attack has
been published in [23]. This paper was not available to us as it is in Japanese.

9.1 More Equations From Clocking Backwards

Recall that we previously started with a0(0) = A0, a1(0) = z0 and a buffer

[B0, B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11, B12, B13, B14, B15,

B16, B17, B18, B19, B20, B21, B22, B23, B24, B25, B26, B27, B28, B29, B30, B31].

There are some additional information that can be used to improve the attack.
From time 0 we looked ahead and tried to determine buffer values by guessing
and using output words from time 0 and onwards. But it is clear that time 0 is
only a starting point that can be any actual time. If we take any such time there
might be output words before time 0 that can be used. One way to model this is
to try to clock the entire generator backwards, i.e. move from time 0 to −1 etc.

First we recall that the L transformation used to get the next a value is
described by the matrix (

1 1
1 d

)
.



Going in the opposite direction would mean going through the inverse linear
transformation, given as

(1 + d)−1

(
d 1
1 1

)
.

¿From the starting values of the buffer given above, we clock once backwards.
Then we obtain

a1(−1) = z−1 = ℓ(A0, S[B30], S[B17 +B29], S[B8 +B16]),

and

a0(−1) = ℓ(A0, S[B30], S[B17 +B29], S[B3 +B7]).

The buffer at time −1 is then

[B1, B2, B3 +B7, B4, B5, B6, B7, B8 +B15,

B9, B10, B11, B12, B13, B14, B15, B16,

B17 +B29, B18, B19, B20, B21, B22, B23, B24,

B25, B26, B27, B28, B29, B30, B31, B0 + a0(−1)]

One more step gives

a1(−2) = z−2 = ℓ(a0(−1), S[B31], S[B18 +B30], S[B9 +B17 +B29]),

and

a0(−2) = ℓ(a0(−1), S[B31], S[B18 +B30], S[B4 +B8 +B15]).

The buffer at time −1 is then

[B2, B3 +B7, B4 +B8 +B15, B5, B6, B7, B8 +B15, B9 +B17 +B29,

B10, B11, B12, B13, B14, B15, B16, B17 +B28

, B18 +B30, B19, B20, B21, B22, B23, B24, B25,

B26, B27, B28, B29, B30, B31, B0 + a0(−1), B1 + a0(−2)]

Let us write out one more equation,

a1(−3) = z−3 = ℓ(a0(−2), S[B0 + a0(−1)], S[B19 +B31], S[B10 +B18 +B30]).

We now try to combine these observations with our previous attempt to
guess variables. Let us return to the situation when 17 bytes had been guessed.
Looking carefully at this situation gives that we know all bytes but B3, B8, B12,
B17, B18, B19, B20, B21, B25, B30.

We have unexplored equations from time 5,

c0 = ℓ(S[B̂30], S[B3], S[B12]),

z5 = ℓ(S[B̂30], S[B3], S[B25]),



where c0 is the value of the guessed a0(5). We have two equations from backward
clocking,

z−1 = ℓ(S[B30], S[B̂17], S[B̂8]),

z−2 = ℓ(S[B30], S[B̂17], S[B̂3], S[B18 +B30], B̂17),

and also

z12 = ℓ(S[B̂3], S[B8], S[B̂25], S[B̂30], S[B18])

z13 = ℓ(S[ℓ(S[B̂3], S[B8])], S[B̂3], S[B8], S[B̂12], S[B̂25], S[B̂30], S[B17])

With one more guessed byte, we can reach a solution for the 7 bytes involved in
these 6 equations. If by no other means, we can simply tabulate all possible such
systems of equations that can occur and in the table write down the solution.
Using the equations for z9 to z11 we can then derive the complete state and check
its correctness. Using a huge table this would give an attack with complexity
around 2152. Time constraints limited us in further investigations and providing
detailed explanations.

9.2 Conclusions

We have not been able to find an attack with complexity lower than 2152. There
seems to be a potential for investigating this type of attack further and look
at the situation when fewer bytes are guessed, and then writing up the system
of equations. Then finding the solutions by pure table lookup methods or by
some more advances method of solving nonlinear equations. This is a direction
we recommend is studied further.

10 Algebraic Attacks

The idea of algebraic attacks is to attack the stream cipher by solving a system
of equations. These equations tend to be nonlinear. A common scenario in the
case of stream ciphers is when there is a part of the state being linearly updated.
Assume one can obtain a nonlinear equation f that depends only on the linearly
updated part of the form

z0 = f(s0, s1, . . . , sm−1),

where (s0, s1, . . . , sm−1) is the linearly updated part, updated by T . Then one
can obtain an arbitrary number of equations of the same degree as f by

z0 = f(s0, s1, . . . , sm−1)

z1 = f(T (s0, s1, . . . , sm−1))

z2 = f(T 2(s0, s1, . . . , sm−1))

...
...



A linearization of the above system means that we replace every monomial up
to the degree of f by a new variable. We receive a linear system of equations
and solve it using Gaussian elimination or some other method. Several ways to
improve this basic approach exists, e.g., [6, 7, 15].

Regarding Enocoro-128v2, this basic approach for algebraic attacks on stream
ciphers does not work, as it does not have a part of the state that is linearly
updated. Because of the feedback from a0 into the buffer, nonlinear expressions
are inserted into the buffer and through the S-boxes and feedback, the degrees
of these expressions grow.

To apply an algebraic attack, we would need to perform the attack more in
style of algebraic attacks on block ciphers. Here we typically set up a system of
nonlinear equations by introducing new intermediate variables. It is well known
that the general problem of solving a system of nonlinear equations in NP-
complete, so in order to be successful we need to come up with a system of
equations that has some deviating property. Such properties could for example
be an overdefined system or a very sparse system.

Regarding Enocoro-128v2, the most obvious approach would be to introduce
a new intermediate variable for a0(t) in each time instance. We would then get
a system of equations consisting of two equations from each time instance. With
variables B0, B1, . . . B31 and A0 as starting values we then get

D1 = A0 + S[B2] + S[B8] + z0 + S[B16],

z1 = A0 + S[B2] + d · (S[B8] + z0) + S[B29],

D2 = D1 + S[B1] + S[B7] + z1 + S[B15],

z2 = D1 + S[B1] + d · (S[B7] + z1) + S[B28],

D3 = D2 + S[B0] + S[B6] + z2 + S[B14],

z3 = D2 + S[B0] + d · (S[B6] + z2) + S[B27],

D4 = D3 + S[B31 +A0] + S[B5] + z3 + S[B13],

z4 = D3 + S[B31 +A0] + d · (S[B5] + z3) + S[B26],

D5 = D4 + S[B30 +D1] + S[B4] + z4 + S[B12],

z5 = D4 + S[B30 +D1] + d · (S[B4] + z4) + S[B25],

...
...

After 33 time instances the system of equations will have one or a few solutions.
Using a few more time instances would give us an overdefined system at the
expense of increasing the number of variables.

We have not been able to find any particular weakness in the system of
equations that could potentially be explored. It is difficult to judge the strength
against methods trying to solve such a system of equations. Typical methods
use the XL algorithm [6], or techniques based on Gröbner bases [5], like the F4
or F5 algorithms [14, 15], Methods using SAT-solvers, e.g., [12] or the related
Agreeing-Glueing algorithm [31] are also possible approaches.



Unfortunately, the usefulness of all these methods is very hard to predict on
full size systems, as the complexity is not easy to model and it is in general very
difficult to predict the complexity from simulating smaller instances of systems.

10.1 Conclusion

The nonlinear update of the buffer makes standard algebraic attacks on stream
ciphers not applicable. A system of 66 quite simple nonlinear equations in 66
unknown variables over F8

2 can be given. We have not identified any weaknesses
that would allow an efficient way of solving the system of equations using known
methods related to Gröbner bases techniques or other similar approaches.

11 Conclusions

After considerable work, going through various kinds of techniques of cryptanal-
ysis we come to the final conclusions regarding the stream cipher Enocoro-128v2.

We believe that Enocoro-128v2 is a very solid construction. It appears to
have a very good resistance against all types of cryptanalytic attacks. Still, the
implementation cost is quite low.

Regarding the various attack techniques we have examined, the different
resynchronization attacks (differential chosen IV, max degree tests and cube
attacks) do not come close to the full number of initialization rounds. Attacks on
the previous version, using related keys and sliding techniques are not possible,
due to the introduced counter.

The TMD tradeoff attacks do not reveal any weaknesses. In the linear distin-
guishing attack scenario, we could not find a linear relationship among output
bytes with low weight, or equivalently, high bias. Our numerical values here can
clearly be improved, but the feeling is that we would still be very far from an
attack better than exhaustive key search.

The perhaps most promising attack is the guess-and-determine type of at-
tack. Even though we could not find such an attack better than exhaustive key
search, we feel that here we are not too far away from this boundary. We would
recommend to further study this type of attack, possibly in combination with
some algebraic method of solving systems of equations.
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A Tables

Table 6. The bias for the noise N from each approximation of the Sbox. Bias corre-
sponding to an approxiamtion with the polynomial 0x00 - 0x7F is given here. In order
to get a fair value for the bias, and allow for easy comparison between the distributions,
the bias of N16 is shown.

0x00 No bias 0x20 2−40.65 0x40 2−35.08 0x60 2−35.92

0x01 2−36.79 0x21 2−40.65 0x41 2−37.70 0x61 2−40.64

0x02 2−39.61 0x22 2−38.64 0x42 2−39.57 0x62 2−39.59

0x03 2−40.65 0x23 2−35.08 0x43 2−41.43 0x63 2−35.08

0x04 2−40.58 0x24 2−38.45 0x44 2−39.62 0x64 2−41.72

0x05 2−39.62 0x25 2−37.70 0x45 2−40.65 0x65 2−41.72

0x06 2−40.65 0x26 2−38.59 0x46 2−38.64 0x66 2−40.65

0x07 2−39.62 0x27 2−31.29 0x47 2−38.64 0x67 2−38.32

0x08 2−35.92 0x28 2−40.06 0x48 2−39.62 0x68 2−39.62

0x09 2−35.08 0x29 2−39.62 0x49 2−36.79 0x69 2−38.64

0x0A 2−39.62 0x2A 2−35.08 0x4A 2−32.73 0x6A 2−39.62

0x0B 2−40.65 0x2B 2−39.25 0x4B 2−38.64 0x6B 2−41.72

0x0C 2−38.64 0x2C 2−38.64 0x4C 2−38.64 0x6C 2−31.29

0x0D 2−37.70 0x2D 2−41.72 0x4D 2−40.65 0x6D 2−35.08

0x0E 2−39.62 0x2E 2−39.59 0x4E 2−40.06 0x6E 2−41.30

0x0F 2−37.70 0x2F 2−36.79 0x4F 2−36.79 0x6F 2−37.68

0x10 2−36.74 0x30 2−37.70 0x50 2−39.62 0x70 2−37.70

0x11 2−32.73 0x31 2−35.92 0x51 2−38.64 0x71 2−36.79

0x12 2−39.62 0x32 2−39.62 0x52 2−34.27 0x72 2−39.96

0x13 2−39.62 0x33 2−35.08 0x53 2−41.40 0x73 2−37.70

0x14 2−37.70 0x34 2−37.70 0x54 2−42.85 0x74 2−38.39

0x15 2−44.03 0x35 2−36.79 0x55 2−38.64 0x75 2−37.70

0x16 2−38.64 0x36 2−38.64 0x56 2−41.72 0x76 2−41.72

0x17 2−38.64 0x37 2−33.49 0x57 2−36.79 0x77 2−35.92

0x18 2−37.70 0x38 2−35.08 0x58 2−40.65 0x78 2−30.60

0x19 2−41.72 0x39 2−40.65 0x59 2−35.08 0x79 2−35.08

0x1A 2−37.70 0x3A 2−37.70 0x5A 2−40.43 0x7A 2−37.70

0x1B 2−35.92 0x3B 2−39.62 0x5B 2−38.64 0x7B 2−36.79

0x1C 2−38.64 0x3C 2−39.62 0x5C 2−37.70 0x7C 2−35.92

0x1D 2−41.24 0x3D 2−38.64 0x5D 2−40.65 0x7D 2−38.64

0x1E 2−40.65 0x3E 2−40.50 0x5E 2−38.47 0x7E 2−36.79

0x1F 2−40.35 0x3F 2−36.79 0x5F 2−36.79 0x7F 2−40.63



Table 7. The bias for the noise N from each approximation of the Sbox. Bias corre-
sponding to an approxiamtion with the polynomial 0x80 - 0xFF is given here. In order
to get a fair value for the bias, and allow for easy comparison between the distributions,
the bias of N16 is shown.

0x80 2−39.62 0xA0 2−42.85 0xC0 2−36.79 0xE0 2−40.65

0x81 2−40.65 0xA1 2−39.62 0xC1 2−37.70 0xE1 2−41.14

0x82 2−39.62 0xA2 2−36.79 0xC2 2−37.70 0xE2 2−40.50

0x83 2−39.04 0xA3 2−41.64 0xC3 2−37.70 0xE3 2−38.55

0x84 2−35.08 0xA4 2−38.32 0xC4 2−40.65 0xE4 2−37.59

0x85 2−36.79 0xA5 2−35.08 0xC5 2−34.27 0xE5 2−39.55

0x86 2−39.55 0xA6 2−34.27 0xC6 2−36.79 0xE6 2−38.64

0x87 2−41.62 0xA7 2−37.70 0xC7 2−35.92 0xE7 2−39.62

0x88 2−37.70 0xA8 2−37.70 0xC8 2−41.59 0xE8 2−37.70

0x89 2−33.49 0xA9 2−38.56 0xC9 2−36.79 0xE9 2−35.08

0x8A 2−36.79 0xAA 2−33.49 0xCA 2−39.62 0xEA 2−35.92

0x8B 2−34.27 0xAB 2−35.08 0xCB 2−33.49 0xEB 2−39.31

0x8C 2−38.55 0xAC 2−35.92 0xCC 2−37.70 0xEC 2−40.63

0x8D 2−40.65 0xAD 2−40.65 0xCD 2−39.62 0xED 2−37.70

0x8E 2−40.65 0xAE 2−38.64 0xCE 2−36.69 0xEE 2−40.65

0x8F 2−37.70 0xAF 2−40.64 0xCF 2−39.62 0xEF 2−36.79

0x90 2−37.70 0xB0 2−33.49 0xD0 2−36.79 0xF0 2−40.63

0x91 2−38.64 0xB1 2−39.46 0xD1 2−38.64 0xF1 2−42.32

0x92 2−38.64 0xB2 2−35.92 0xD2 2−35.08 0xF2 2−38.64

0x93 2−38.64 0xB3 2−37.70 0xD3 2−38.64 0xF3 2−40.61

0x94 2−35.92 0xB4 2−36.79 0xD4 2−42.71 0xF4 2−39.51

0x95 2−41.14 0xB5 2−37.70 0xD5 2−41.58 0xF5 2−41.71

0x96 2−41.72 0xB6 2−39.62 0xD6 2−41.72 0xF6 2−35.92

0x97 2−35.08 0xB7 2−42.71 0xD7 2−37.70 0xF7 2−37.68

0x98 2−39.62 0xB8 2−38.64 0xD8 2−40.65 0xF8 2−39.59

0x99 2−36.79 0xB9 2−37.70 0xD9 2−41.72 0xF9 2−39.31

0x9A 2−38.64 0xBA 2−36.79 0xDA 2−39.62 0xFA 2−40.65

0x9B 2−35.92 0xBB 2−36.79 0xDB 2−34.27 0xFB 2−41.67

0x9C 2−39.46 0xBC 2−39.62 0xDC 2−40.57 0xFC 2−42.67

0x9D 2−42.85 0xBD 2−42.60 0xDD 2−35.92 0xFD 2−39.45

0x9E 2−34.88 0xBE 2−37.70 0xDE 2−42.80 0xFE 2−35.08

0x9F 2−35.92 0xBF 2−35.08 0xDF 2−35.92 0xFF 2−35.92


