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Executive Summary

We have performed a security evaluation of the cryptographic block cipher
CLEFIA as described in [28].

We have analysed the cipher with respect to the state-of-the-art crypt-
analysis and we have found no serious weaknesses or attacks. It is further
believed that the security margin is sufficient with respect to the currently
known attacks.

Finally we would like to point out that this report is the result of a
limited-time review.
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1 Introduction

This report presents the results of a limited evaluation of the block cipher
CLEFIA. In the work order specification it is required that CLEFIA is eval-
uated with respect to the following attacks:

1. • Differential Attack (including Truncated Differential Attack, Im-
possible Differential Attack)

• Linear Attack (including Truncated Linear Attack)

• Higher Order Differential Attack

• Interpolation Attack

• Algebraic Attack (including XL attack and XSL attack)

• Related Key Attack and

• The existence of weak keys and semi-weak keys

2. (Optional) Any other attacks specific to CLEFIA and Heuristic security

In the following all these attacks are considered except for the truncated
linear attack. We could only find one reference about this attack and this
reference is not available to us.

2 CLEFIA - short

Here we describe CLEFIA in short. For full details the reader is referred to
[28].

CLEFIA is block cipher with 128-bit blocks and a choice of 128-bit, 192-
bit and 256-bit keys. The structure of the cipher is a so-called generalised
Feistel network with four data lines, each carrying 32-bit words, see Figure 1.
The functions F0 and F1 both take a 32-bit subkey and a 32-bit input, and
both return a 32-bit word. First the subkey is combined with the data input
using the exclusive-or operation. The 32-bit result is split into four bytes, and
the bytes are evaluated through the S-boxes S0 and S1, such that, two bytes
are substituted using S0 and two bytes are substituted using S1. The order
of use of S0 and S1 is different for F0 and F1. The four substituted bytes
are input to a linear transformation built from MDS codes. This element
is borrowed from the AES and guarantees that the round function provides
some level of an avalanche effect. Later we describe some more details about
the generation of subkeys. We refer to [28] for further details.
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Figure 1: The CLEFIA network with two rounds. F0 and F1 are bijective
mappings for fixed values of the rkis.

3 Security aspects

In this section we report on some cryptanalytic findings in CLEFIA. CLEFIA
is an iterated cipher which runs in either 18, 22, or 26 rounds depending on
the choice of size of the key of 128, 192, respectively 256 bits.

3.1 Brute Force Attacks

We shall briefly comment on brute-force attacks against the 128-bit key. The
European project ECRYPT issues a yearly report on algorithms and key
sizes [10], and we base our evaluation on this report. We refer to [10] for
many more details on this topic.

When studying the security of a key against an attacker who performs a
simple brute-force attack, and exhaustive search for the key, the best thing
is to get a good model of the nature of the attacker and of the computational
resources the attacker is in possession of. An attacker could be a single
human being which is trying to “hack” from a single PC, it could be a
company doing industrial spionage using hundreds of computers, or to go to
an extreme, it could be an intelligence agency with a huge budget and using
special-constructed and dedicated hardward to search the key space. The
conclusion of ECRYPT is that a 128-bit key provides long-term protection
against all these adversaries. A 128-bit key size is a good, generic application-
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independent recommendation, and should provide security for at least the
next 20 years.

3.2 Differential cryptanalysis

The most general method of analysing conventional cryptosystems today is
differential cryptanalysis , published by Biham and Shamir in 1990. The
method has proved to be relatively efficient and has been applied to a wide
range of iterated ciphers see e.g., [2]. Furthermore, it was the first attack
which could (theoretically) recover DES keys in time less than the expected
cost of exhaustive search [2]. In the following a brief description of differential
cryptanalysis with respect to a general n-bit iterated cipher.

First, one defines a difference between two bit strings, s and s′ of equal
length as

∆s = s⊕ s̃−1, (1)

where ⊕ is the group operation on the group of bit strings used to combine
the key with the text input in the round function and where t−1 is the inverse
element of t with respect to ⊕. One of the main ideas behind this is, that
the differences between the texts before the key is inserted and the difference
between the texts after the key is inserted are equal, so the difference is inde-
pendent of the key through this operation. In a strong encryption algorithm
there will be some parts of the cipher where a difference cannot hold with
certainty. In a differential attack one exploits that for certain differences in
the input to the a particular function, the distribution of output differences
of is non-uniform. One defines characteristics [2]:

Definition 1 An r-round characteristic is a series of differences defined as
an r + 1-tuple {α0, α1, . . . , αr}, where ∆c0 = α0, ∆ci = αi for 1 ≤ i ≤ r.

Define pi as the probability that inputs of difference αi−1 lead to output of
difference αi, where the probability is taken over all choices of the round key
and the inputs to the ith round. In [23] the notion of a Markov cipher was
introduced. In a Markov cipher this probability is independent of the actual
inputs of the round and is calculated over all possible choices of the round
key. Also in [23] it was shown that in a Markov cipher if the round keys are
independent, the pi’s are also independent and

Pr(∆cr = αr |∆c0 = α0) =
r∏

i=1

Pr(∆ci = αi |∆ci−1 = αi−1). (2)
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3.3 Differential characteristics for CLEFIA

We computed the maximum probabilities over the S-boxes of CLEFIA. From
our implementations it follows that the maximum probability of a differential
characteristic through S0 is 10/256. Also, the maximum probabilities of
differentials over S1 are 2−6.

One of the most efficient ways to build differential characteristics is to
identify so-called iterative characteristics over a small number of rounds,
which can then be concatenated to cover more rounds. With identical inputs
to the functions F0 and F1 one gets identical outputs, hence a differential
characteristic of probability one can be established. In order to maximise
the probability of differential characteristics one often tries to maximise the
number of probability-one transitions. Next we examine iterative character-
istics.

Consider a 1-round iterative characteristic

a b c d

a b c d

F0 F1

(a, b, c, d)
1r→ (a, b, c, d),

where the differences in the four 32-bit words are a, b, c, respectively d. It
follows that it must hold that

a = d and b = c

and that a
F0→ a⊕ b and b

F1→ a⊕ b. Since F0 and F1 are bijective mappings, it
must further hold that a ̸= 0, b ̸= 0 and a ̸= b. From these observations and
from the properties of F0 and F1 it follows that if a has one active S-box,
then b has at least three active S-boxes. And if a has two active S-boxes,
then b has at least one. Therefore one can conclude that for a one-round
iterative characteristic there will be at least four active S-boxes per round.
Such a characteristic will have a probability of at most ( 10

256
)2 ≈ 2−18 for one
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round. When iterated to 12 rounds this gives a probability of approximately
2−216.

Consider next a 2-round iterative characteristic

(a, b, c, d)
2r→ (a, b, c, d),

which is depicted here:

d c b a

a b c d

F0 F1

a b c d

F0 F1

It follows from this picture that the following four transitions must occur:

a
F0→ b+ d,

c
F1→ b+ d,

b
F1→ a+ c,

d
F0→ a+ c.

Also, if one of a, b, c, or d is zero, then the other three will also be zeros. In
other words,

if a = 0 then (b, c, d) = (0, 0, 0),

if b = 0 then (a, c, d) = (0, 0, 0),

if c = 0 then (a, b, d) = (0, 0, 0),

if d = 0 then (a, b, c) = (0, 0, 0).
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As an example, if a = 0 then b = d, which follows from the first transition,
since F0 is a bijection. If b = d, then c = 0, which follows from the second
transition and from the fact that F1 is a bijection. If c = 0, then b = 0, which
follows from the third transition and it follows that then also d = 0.

If all four words are zero, then we have a trivial characteristic over two
rounds with equal inputs and equal outputs. Therefore, to be of any use in
cryptanalysis all four words must be nonzero. We conjecture, without proof,
that the number of active S-boxes in such a 2-round characteristic must be
at least six. Such a characteristic will have a probability of at most 2−28 for
two rounds. When iterated to twelve rounds this gives a probability of at
most 2−168. Note that this is a bound and there is no guarantee that one can
find such a characteristic.

Extending the above analysis to three rounds is possible but the number
of possibilities to examine grows. Instead one can do a computer search for
differential characteristics just counting the number of active S-boxes. This
does not always lead to a real differential characteristic but it gives bounds
for the best differential characteristics possible.

This computer search program starts from a number of active S-boxes in
each of the four words of the plaintext difference. Then it allows for different
transitions through the functions F0 and F1. Since the branch number of
both these functions is five, with one active S-box in the input, there will
be four active S-boxes in the output. With two active S-boxes in the input,
there can be three or four active S-boxes in the output. With three active
S-boxes in the input, there can be two, three or four active S-boxes in the
output. And with four active S-boxes in the input, there can be between one
and four active S-boxes in the output. The program tries all possibilities.
Also, the xor operation of the right half of the round input and the otuput
of the Fi (i = 0, 1) functions can cancel active S-boxes or create new ones.
Again, the program tries all possibilities. Our search shows that the number
of active S-boxes for any 4-round differential characteristic is at least 6, for
any 5-round differential characteristic the number is at least 8, and for any
6-round differential characteristic the number is at least 12. A 6-round dif-
ferential characteristic will then have a probability of at most ( 10

256
)12 ≈ 2−56.

When iterated to 12 rounds one gets a probability of at most 2−112. This
is low enough to conclude that any attack based on traditional differential
characteristic will not be able to cryptanalyse any variant of CLEFIA.

Note that the above 6-round or 12-round characteristics might not exist
and if they do they could be hard to find. Next we consider a 3-round
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e d f b

0 f 0 e

F0 F1

F0 F1

0 b 0 d

b 0 d 0

F0 F1

Figure 2: A 3-round differential characteristic.

iterative characteristic

(a, b, c, d)
3r→ (a, b, c, d),

for which we can easily bound the exact number of active S-boxes. Consider
Figure 2.

We have chosen a = c = 0. Then, for some values of e and f , if the
following transitions hold

b
F0→ e,

e
F0→ d,

d
F1→ f,

f
F1→ b,

14



then one can specify the following 3-round characteristic

(0, b, 0, d)
3r→ (0, f, 0, e).

This characteristic concatenated to itself yields a six-round iterative charac-
teristic

(0, b, 0, d)
6r→ (0, b, 0, d).

It follows that to be useful in cryptanalysis both b and d must be nonzero.
If b = 0, then e = 0, but then d = 0, and then f = 0. Similarly, if d = 0,
then f = 0, but then b = 0, and then e = 0.

It is rather easy to estimate the number of active S-boxes for the above
four transitions. The branch numbers of F0 and F1 are both five, so the
number of active S-boxes for b and e in unison is five, and five also for d
and f in unison. Consequently, there will be at least ten active S-boxes in
the 3-round characteristic and the probability will be at most ( 10

256
)10 ≈ 2−48.

When iterated to 12 rounds one gets a probability of at most 2−192.
It is safe to conjecture that there are no useful differential characteristics

for any variants of CLEFIA.

3.4 Linear Cryptanalysis

Linear cryptanalysis was proposed by Matsui in 1993 [18]. A preliminary
version of the attack on FEAL was described in 1992 [19]. Linear crypt-
analysis is a known plaintext attack in which the attacker exploits linear
approximations of some bits of the plaintext and ciphertext. In the attack
on iterated ciphers the linear approximations are obtained by combining ap-
proximations for each round under the assumption of independent round
keys. The attacker hopes in this way to find an expression

(m · α) = (c · β) (3)

where α, β are n-bit strings and where ‘·’ denotes the dot product, which
holds with probability p ̸= 1

2
over all keys, such that |p− 1

2
|, called the bias,

is maximal. As in differential cryptanalysis one can define characteristics to
be used in linear cryptanalysis. The number of known plaintexts needed such
that the relation (3) can be effectively detected is approximately |p− 1/2|−2.

We computed the maximum linear probabilities over the S-boxes of CLE-
FIA. From our implementations it follows that the maximum correlation of
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a linear characteristic through S0 is (2 · 28/256)2 ≃ 2−4.39. 1 Also, the
maximum correlations of linear characteristics over S1 are 2−6.

The detection of linear characteristics is very similar to the detection of
differential characteristics. Since the highest correlation through one S-box
is very close to the highest probability of a differential characteristic for one
S-box (10/256 ≈ 2−4.67). Therefore, we feel that it is safe to conjecture that
there are no useful linear characteristics for any of the variants of CLEFIA.

3.5 Truncated differential cryptanalysis

In some ciphers it is possible and advantageous to predict the values of only
parts of the differences after each round of the cipher. Let {α0, α1, . . . , αs},
be an s-round characteristic. Then {α′

0, α
′
1, . . . , α

′
s} is called a truncated

characteristic, if α′
i is a subsequence of αi. Truncated characteristics were

used to some extent in [2] but only in the outer rounds of a cipher. Note
that a truncated characteristic is a collection of characteristics and therefore
reminiscent of a differential. A truncated characteristic contains all char-
acteristics {α′′

0, α
′′
1, . . . , α

′′
s} for which trunc(α′′

i ) = α′
i, where trunc(x) is the

truncated value of x, where the truncation is not further specified here. The
notion of truncated characteristics extends in a natural way to truncated
differentials introduced in [13].

We first restrict ourselves to truncated differentials with differences split
into four 32-bit words, and the difference in each word is either zero or
nonzero. It follows by easy computer simulations, that there is a five-round
truncated differential of this type for CLEFIA. With equal values in the first
(leftmost), the third and the fourth (rightmost) words, and different values
in the second words, one gets that there is always a nonzero difference in
the fourth words of the ciphertexts after five rounds of encryption. Consider
Figure 3.

It follows that

b ̸= 0 ⇒ c ̸= 0,

c ̸= 0 ⇒ d ̸= 0, and

d ̸= 0 ⇒ e ̸= 0

1This correlation is defined as (2(p − 1
2 ))

2 where p − 1
2 denotes the bias of the linear

approximation
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e b f d

g f h e

F0 F1

d 0 b c

F0 F1

c 0 0 b

F0 F1

b 0 0 0

F0 F1

0 b 0 0

F0 F1

Figure 3: A 5-round truncated differential characteristic, where b ̸= 0 and
e ̸= 0.
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Evidently there is the possibility to split each word into four bytes and
considering byte-differences. However, since the four bytes in each 32-bit
word are mixed in a strong way via eight-bit S-boxes and MDS-matrices,
there is little chance that the above five-round structure can be iterated to
more than a few extra rounds. In our opinion it is safe to conclude that
for CLEFIA reduced to ten rounds, there are no useful truncated differen-
tials. As as special case of truncated differentials are the so-called impossible
differentials, which we consider next.

3.6 Impossible differentials

Impossible differentials is another name for differential characteristics of
probability zero. These differentials can be used in differential cryptanal-
ysis and are in general as effective as high-probability differentials. However,
differentials of very low probability are not trivial to find. One popular
method is as follows. Imagine that a cipher can split into two parts, e0 and
e1. Assume that one can find a differential through e0, e.g.,

α
e0→ β

with probability one, and assume that one can find a differential through the
inverse of e1, e.g.,

γ
e−1
1→ η

also with probability one. Then if β ̸= η one can establish a differential of
probability zero through e1 ◦ e0:

α
e1◦e0→ γ

of probability zero.

3.6.1 Impossible differentials for CLEFIA

We implemented a search for impossible differentials for CLEFIA, or rather
for ciphers with the same structure as CLEFIA, the generalized type-2 trans-
formation. Our tests identify there are impossible differentials over 9 rounds
of CLEFIA. Next we explain this phenomenon. Consider the 5-round trun-
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0 b 0 0

b 0 0 0

F0 F1

0 0 b c′

F0 F1

c′ d′ 0 b

F0 F1

b e′ d′ f ′

F0 F1

Figure 4: A 4-round truncated differential characteristic for the decryption
operation, where b ̸= 0.
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cated differential of Figure 3 and the 4-round truncated differential of Fig-
ure 4. If we concatenate the two differentials, we require that

g = b,

f = e′,

h = d′, and

e = f ′.

Note also, that b ̸= 0 and e ̸= 0. Consequently, it must be the case that
two inputs to F0 of nonzero difference e in the fifth round of the differential
lead to equal outputs. However, since F0 is a bijection for a fixed key, this is
impossible. Hence the 9-round truncated differential

(0, b, 0, 0)
9r→ (b, 0, 0, 0)

has probability zero. This confirms the analysis made in [29].
Also, our tests confirm that for 10 rounds (or more) of this structure there

are no impossible differentials. We stress that our tests were conducted with
randomly chosen bijections (F -functions) in the round functions. Such tests
for (real) CLEFIA would require computational resources out of our reach.

The 9-round impossible differentials can be used to recover key material
for reduced-round versions of CLEFIA. The best such known attack appears
to be the one of [31], which specifies a key-recovery attack for a variant of
CLEFIA reduced to 14 rounds with a 128-bit key but where the key-whitening
layers have been ignored.

3.7 Integral cryptanalysis

Let S be a multiset of vectors. An integral over S is defined as the sum of
all vectors in S. In other words, the integral is∫

S =
∑
v∈S

v,

where the summation is defined in terms of a particular group operation, for
CLEFIA we consider the exclusive-or operation.

In an attack, one tries to predict the values in the integrals after a certain
number of rounds of encryption. For this purpose it is advantageous to
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distinguish between the three cases: where all ith words are equal, where all
ith words are pairwise distinct, or where all ith words sum to a certain value
predicted in advance.

Let us introduce the following symbols for words in an integral. For a
first-order integral, the symbol ‘C’ (for “Constant”) in the ith entry, means
that the values of all ith words in the collection of texts are equal. The
symbol ‘A’ (for “All”) means that all words in the collection of texts are
different, and the symbol ‘B’ (for “Balanced”) means that the exclusive-or
sum of all ith words is zero. Finally, we will write ‘?’ when the sum of words
can not be predicted. For more details, please consult [14].

3.7.1 Integrals for CLEFIA

We have identified a structure which can be used to distinguish CLEFIA
from a randomly chosen permutation after eight rounds of encryption. The
structure can be used in a key-recovery attack on CLEFIA reduced to nine
and ten rounds of encryption.

There is the following six-round integral with 232 texts

(C,A, C, C) 6R→ ( ? , ? , ? ,B),

where each symbol is indicating the values of particular 32-bit words. The
round transitions are as follows:

(C,A, C, C) 1r→ (A, C, C, C)
1r→ (A, C, C,A)
1r→ (A, C,A,A)
1r→ (A,A,B,A)
1r→ (B,B, ? ,A)
1r→ ( ? , ? , ? ,B)

This integral can be used to construct a seven-round integral with 264 chosen
plaintexts, which holds with probability one. Note that the rightmost and
2nd rightmost words of the inputs to one round map to the 2nd leftmost
and 2nd rightmost words of the inputs to the following round. Consider a
structure of 264 chosen plaintexts which have constant values in the two left-
most words but which are pairwise different in the remaining 64 bits. Then
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after one round of encryption one has a structure of 264 chosen plaintexts
which have constant values in leftmost and rightmost words but are pairwise
different in the middle 64 bits. Thus this structure contains 232 structures
of each 232 texts, and each such structure forms an integral with notation
(C,A, C, C). Since the texts in each of these structures are balanced in the
rightmost words after six rounds of encryption, so is the sum of all 232 struc-
tures. Thus there is a 7-round integral of the form

(C, C,A,A)
7R→ ( ? , ? , ? ,B).

Using similar arguments one can show that there is an eight-round integral
for CLEFIA which requires 296 chosen plaintexts and which holds with prob-
ability one. It has the notation

(A, C,A,A)
8R→ ( ? , ? , ? ,B).

This structure can be used in a key-recovery attack on CLEFIA reduced to
nine rounds of encryption. The attack requires a structure of 296 chosen
plaintexts and a running time of 296 simple operations and finds 32 bits of
the secret subkeys.

Attack on 9-round CLEFIA. The attack is constructed as follows.

1. Construct a set of 296 chosen, different plaintexts xi for i = 1, . . . , 296,
such that these texts have equal values in the second leftmost 32-bit
word. Request the encryptions, yi of xi for i = 1, . . . , 296.

2. Compute the exclusive-or of the rightmost 32-bit words of all yis. Name
this sum Y .

3. Count the frequencies of the values in the second rightmost 32-bit words
of all ciphertexts. Make a list, L, of those 32-bit values which have odd
frequencies. (Since we are computing exclusive-or sums of all words,
those which occur an even number of times will cancel out).

4. For all values, t, of the last-round subkey rk2r−1, here r = 9, do the
following:

(a) Compute the exclusive-or, Z, of the values F1(t, z) for all values
z ∈ L.
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(b) If Z = Y , then t is a candidate value for rk2r−1. If Z ̸= Y , then t
is not the correct value for rk2r−1.

Note that for the correct value of rk2r−1 one gets Z = Y , since the integral
promises that the exclusive-or of the fourth words after eight rounds is zero.
For an incorrect value of rk2r−1 we assume that one gets Z = Y only with a
probability of 2−32. If more than one value of rk2r−1 remains after the above
procedure, the attack can be repeated on another structure of 296 plaintexts.
Note that in step three above, we need not consider values of z which occur
an even number of times, since the exclusive-or of these results through F1

is zero.
The attack can be extended to CLEFIA reduced to ten rounds which

finds 64 bits of the subkeys.

Attack on 10-round CLEFIA. The attack goes as follows.

1. Construct a set of 296 chosen, different plaintexts xi for i = 1, . . . , 296,
such that these texts have equal values in the second leftmost 32-bit
word. Request the encryptions, yi of xi for i = 1, . . . , 296.

2. Compute the exclusive-or, Y , of the rightmost 32-bit words of all yis.

3. For all values, t1, of the last-round subkey rk2r−2, and for all values, t2,
of the subkey wk2 ⊕ rk2r−3, here r = 10, do the following:

(a) For each ciphertext ci = (ci,0, ci,1, ci,2, ci,3) compute

Zi = F0(rk2r−1, ci,0)⊕ ci,1,

then compute
Yi = F1(rk2r−3, Zi)⊕ ci,2.

Compute the exclusive-or of all Yi, Y =
∑

i Yi.

(b) If Y = 0, then (t1, t2) are candidate values for rk2r−2, and wk2 ⊕
rk2r−3. If Y ̸= 0, then (t1, t2) are not the correct values for rk2r−2,
and wk2 ⊕ rk2r−3.

Each incorrect 64-bit value (t1, t2) will be a candidate value with a probability
of 2−32. Therefore the attack needs to be repeated at least once with a
different set of chosen plaintexts. This attack finds 64 bits of information
about the round keys. Note that for each key guess (64 bits) one needs to do
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at most 232 evaluations of F0 and 232 evaluations of F1, and thus the overall
complexity is close to 2128 evaluations of the function F .

In an extension to 11 rounds of CLEFIA, it appears that one has to guess
on five subkeys of each 32 bits. Given the large amount of chosen plaintexts
needed in this attack, such an attack is completely out of reach for even the
most powerful attackers.

3.8 Higher order differential cryptanalysis

In [16] a definition of higher order derivatives of discrete functions was given.
Later higher order differentials were used to cryptanalyse ciphers presumably
secure against conventional differential attacks [13] and further developed in
[11].

A dth order differential is a collection of 2d (first-order) differentials. The
main idea in the higher order differential attack is the fact that a dth order
differential of a function of nonlinear order d is a constant. Consequently, a
d+1st order differential of the function is zero. Assume that (a subset of) the
output bits of the reduced cipher are expressible as a low-degree polynomial
p(x) ∈ GF (2)[x1, x2, . . . , xi], where x1, x2, . . . , xi is a subset of input bits to
the reduced cipher. If this polynomial has degree not higher than d, then∑

x∈Ld

p(x) = c,

where Ld denotes a d-dimensional subspace of GF (2)n and c a constant.
This method was applied to the cipher example given in [22]. This cipher is
“provably secure” against a differential attack but can be broken in a higher
order differential attack with relatively low complexity.

3.8.1 Higher order differentials for CLEFIA

The success of attacks based on higher order differentials depends on the
algebraic degrees of the nonlinear components in the cipher. The algebraic
degrees of the bijective four-bit S-boxes, SSi, are three, thus the algebraic
degree of S0 is at most six. For comparison, a randomly chosen, invertible
eight to eight bit S-box has algebraic degree seven with high probability. We
found no indication that the algebraic degree of six for S0 is a weakness for
CLEFIA. The algebraic degree of S1 is seven. The two S-boxes used are both
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8-bit bijections. It is known that seven is the maximum attainable algebraic
degree for bijective eight-bit S-boxes.

It is not clear how the degrees will grow with the number of rounds in
CLEFIA, but it appears that with 18 rounds of encryption it is extremely
unlikely that attacks based on higher order differentials will prove successful.

3.8.2 Boomerang attack

The boomerang attack is a special case of a second-order differential. The
boomerangs are effective in particular for ciphers for which a subpart (e.g.,
half) of the cipher has high-probability differentials. The penalty in the
boomerang attack is the requirement for four differential paths throughout
the particular subparts of the cipher. The very conservative estimates of dif-
ferential probabilities are already low enough to conclude that the boomerang
attack will not be superior to a classical differential attack.

The amplified boomerang attack and the rectangle attack are variants of
the boomerang attack and we are convinced that these attacks are no threat
for CLEFIA with the specified number of rounds.

3.9 Interpolation cryptanalysis

In [11] the interpolation attack was introduced based on the following well-
known formula. Let R be a field. Given 2n elements x1, . . . , xn, y1, . . . , yn ∈
R, where the xis are distinct. Define

f(x) =
n∑

i=1

yi
∏

1≤j≤n,j ̸=i

x− xj

xi − xj

. (4)

f(x) is the only polynomial over R of degree at most n−1 such that f(xi) = yi
for i = 1, . . . , n. Equation (4) is known as the Lagrange interpolation formula.

In the interpolation attack an attacker constructs polynomials using in-
puts and outputs of the reduced cipher. This is particularly easy if the
components in the cipher can be easily expressed as mathematical functions.
The idea in the attack is, that if the constructed polynomials have a small
degree, only few plaintexts and their corresponding ciphertexts are neces-
sary to solve for the (key-dependent) coefficients of the polynomial. In an
extended version of the attack meet-in-middle techniques are used to further
reduce the degrees of the used polynomials [11].
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The interpolation attacks are reminiscent of attacks based on higher order
differentials and are effective mostly on ciphers for which all components can
be written as polynomials in the inputs with few coefficients. Since this is
clearly not the case for the S-boxes used in CLEFIA, there is no reason to
believe that the interpolation attack is applicable to more than a few number
of rounds of CLEFIA.

3.10 Algebraic cryptanalysis

The XL [7] and XSL [8] cryptanalytic attacks and variations of these are
often also referred to as “algebraic attacks”. Here one writes polynomial
expressions in the inputs and outputs of each round of a cipher, then tries
to solve these to find the secret key. The complexity of such an attack grows
with the number of nonlinear components in the cipher. These methods are
surrounded by controversy although there seems to be consensus that the XL
method has some merit [6, 9, 17].

Here we first investigate algebraic expressions over the S-boxes in CLE-
FIA. The 8× 8-bit S-box S0 is constructed from four 4× 4-bit S-boxes

SS0, SS1, SS2, SS3.

Let x be an eight-bit input, then the eight-bit output is computed as follows,
where an eight-bit word, a, is divided into two four-bit words a0 and a1, cf.
[28].

w := SS0(x0) | SS1(x1),

v := L(w0, w1),

y := SS2(v0) | SS3(v1),

where L is a linear transformation. First of all, it has been confirmed that
there are no deterministic relations of degrees maximum two in the bits of the
input x and the bits of the output y of S0. However, it is nonetheless possible
to establish a set of equations of degree at most two over S0. It is well-known
that there are at least 21 deterministic relations of degrees maximum two in
the bits of the input and output of a four to four bit S-box. This follows
from the fact that from the constant one and from the eight bit variables
one can form 37 terms of degrees at most two. There are one term of degree
zero, eight terms of degree one and

(
8
2

)
= 28 terms of degree 2. Since there
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are only 16 pairs of input and output over the S-box, one can establish 16
equations in 37 unknowns and the result follows. It was confirmed that for
all four S-boxes SSi there are exactly 21 quadratic equations in the input
and output bits.

Therefore there are 21 quadratic equations over the bits in x0 and w0 and
21 quadratic equations over the bits in x1 and w1. Similarly there are 21
quadratic equations over the bits in y0 and v0 and 21 quadratic equations
over the bits in y1 and v1. In total, one can establish a set of 84 quadratic
equations in 24 bits, the eight bits of x, y, and v. Note that the bits of w and
v are related by linear equations.

Also, it has been confirmed that there are 39 deterministic relations of
degrees two in the input bits and output bits of S1.

Algebraic attacks on block ciphers are surrounded by controversy and no
real-life ciphers have yet been proved to be vulnerable to such an approach.
For CLEFIA with 18 rounds, a total of 144 S-boxes are used. The Advanced
Encryption Standard uses a total of 144 S-boxes in nine rounds of encryption.
One might expect that the complexity of an algebraic attack on 18-round
CLEFIA is similar to the complexity of an algebraic attack on 9-round AES
[25].

Thus, it is safe to conclude that a breakthrough in algebraic cryptanalysis
of CLEFIA also would mean a breakthrough in algebraic cryptanalysis of the
AES. And it seems that an algebraic attack on AES is very far from being a
realistic threat.

3.11 The key scheduling algorithm

The key schedules of the most popular ciphers can be categorised as follows.

1. Linear key schedules. These are where the round keys or subkeys are
derived as affine transformations of the main key. Examples include
the key schedules of DES [21] and KASUMI [1].

2. Non-linear key schedules. These are where the round keys or subkeys
are generated as (simple) non-linear transformations of the main key.
A prominent example is the key schedules of AES [20].

3. Complex key schedules. These are where the round keys or subkeys
are generated as a complex, non-linear transformations of the main
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key. Examples include the key schedules of RC5 [26] and CLEFIA
among many others.

Here we describe briefly the 128-bit key schedule of CLEFIA. The user-
selected key is denotedK. The whitening keys and the round keys are derived
from a number of 128-bit values, denoted here by Ai.

First a derived key L is obtained, which is 128-bit value computed as the
encryption of K in a 12-round cipher with a chosen constant as the key.

Then

A0 = K,

A1 = L⊕ C1,

and the rest of the values are computed as follows:

A2i = Σ2i−1(L)⊕K ⊕ C2i,

A2i+1 = Σ2i(L)⊕ C2i+1

for i = 1, . . . , 4, where Cj are the constants defined in the key schedule. Σ is a
bit permutation, which consists of two swaps (“The DoubleSwap Function”).

3.11.1 Weak keys

For some ciphers there is a, usually small, subclass of keys which can be
regarded weak as compared to other keys. E.g., in the Data Encryption
Standard, DES, four values of the key have been identified for which the
encryption operation equals the decryption operation, and it is not recom-
mended to use these values with DES.

For CLEFIA we did identify pairs of keys for which many of the corre-
sponding subkeys are related. We illustrate our findings on the 128-bit key
version of CLEFIA, the key-schedules for the other key sizes have similar
properties. The user-selected key K of 128 bits is encrypted (using constants
as encryption keys) to generate a 2nd key L, also of 128 bits. The encryption
used is invertible, such that given L, one can find a unique value of K. The
36 subkeys rki for i = 0, . . . , 35 each of 32 bits and the four whitening keys
wkj for j = 0, . . . , 3 each of 32 bits are generated from K and L, such that
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wkj depend only on K, rki for i = 8k, . . . , 8k + 3 depend only on L, and rki
for i = 8k + 4, . . . , 8k + 7 depend on both K and L, where k ≥ 0.

Consider the value of K for which L = 0, let us call this value K0. In
this case, it follows that for i = 0, . . . , 4:

A2i = K0 ⊕ C2i,

A2i+1 = C2i+1,

where Cj are the constants defined in the key schedule. Another example,
is the value of K, say K1, for which L = 1, meaning the string consisting of
128 1-bits.

In this case, it follows that for i = 0, . . . , 4:

Ã2i = K1 ⊕ C2i,

Ã2i+1 = C2i+1,

Consequently, if one considers the exclusive-or of all Ai keys for the two
keys K0 and K1 one gets a series of values Xi = Ai ⊕ Ãi:

X2i = K0 ⊕K1 ⊕ 1,

X2i+1 = 1,

where 1 is the string of 128 1-bits. We found no reason to discourage the use
of these keys for CLEFIA used for encryption.

Consider further two keys K and K ′ and the corresponding derived keys
L and L′. Imagine that L and L′ are different in s bits, in other words,
the Hamming distance between the two strings is s. L and L′ are both
transformed using DoubleSwap a total of eight times. It follows that the
Hamming distances of L and L′ after each of these tranformations remain
s. Thus if s is small, this means that all subkeys which depend on only L
and L′ have a small Hamming distance. The Hamming distances in all other
subkeys on the other hand are expected to look random. We have found no
way of exploiting these properties of related keys and they are not likely to
pose a problem for CLEFIA when used for encryption.

Finally we report on a related-key property involving more than two keys.
Consider the four pairwise, different keys K0, K1, K2, K3, where K0 ⊕K1 ⊕
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K2 ⊕ K3 = 0. Also, assume that the derived keys L0, L1, L2, L3 have the
similar property that L0 ⊕ L1 ⊕ L2 ⊕ L3 = 0. Consider the four whitening
keys wk0 for the four keys. It follows that the exclusive-or of these keys is
zero. A similar property holds for any of the whitening keys and for any of the
32-bit round keys (rki). As an example, the key words rk12, rk13, rk14, rk15
are derived from σ3(L)⊕K plus some constants. But

σ3(L0)⊕K0 ⊕ σ3(L1)⊕K1 ⊕ σ3(L2)⊕K2 ⊕ σ3(L3)⊕K3 =
3∑

i=0

σ3(Li)⊕
3∑

i=0

Ki = 0.

Note that the constants in the key-schedule cancel out above. Also note
that similar properties hold for sets of any even number of keys. One can
find such sets of 2j keys efficiently for larger values of j using the techniques
developed in [30]. However it is clear that for encryption such sets of keys
are not likely to be used in practice and we have found no way of exploiting
these properties of related keys and they are not likely to pose a problem for
CLEFIA.

One possible drawback of the key scheduling algorithm is the use of many
different constants, which must be stored or generated on the fly.

3.11.2 Related key attacks

There are several variants of this attack depending on how powerful the
attacker is assumed to be.

1. Attacker gets encryptions under one key.

2. Attacker gets encryptions under several keys.

(a) Known relation between keys.

(b) Chosen relation between keys.

The concept of related-key attacks is from [3]. Later, related key attacks
were reported on several other block ciphers [12] and latest a series of papers
regarding the AES [4, 5].

Attacks based on related keys are regarded by some as impractical, since
often it is required that an attacker can obtain the encryption of many chosen
plaintexts, sometimes encrypted using many different, related keys. Usually
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in cryptanalytic attacks on block ciphers it is assumed that the key is secret
and that it is chosen uniformly at random. For the attacks of 2b above it is
clear that this assumption can no longer be used. Nonetheless, many block
ciphers are designed to (try to) avoid these attacks and the cryptographic
community seems to support related-key attack results.

We have examined the key scheduling algorithm of CLEFIA, but found
no evidence that this enables efficient related-key attack of any type. The
above findings illustrate that there are collection of keys for which one can
easily predict the relations between many subkeys. However, keys used for
encryption should be chosen uniformly at random, and even if one allows
for an attacker to choose an offset, say α, and get encryption under the
keys k and k ⊕ α, the L-values are likely to be highly unpredictable and
thus the relations between the subkeys for k and k ⊕ α are likely to look
random. Therefore, related-key attacks seem to be extremely hard to mount
on CLEFIA.

3.12 Known key security

The known-key security concept was introduced in [15]. In this scenario it is
assumed that the key is known and the task of the attacker is to find some
“statistical weakness” in the block cipher using the particular key.

Consider the integral of Section 3.7.1.

(C,A, C, C) 1r→ (A, C, C, C)
1r→ (A, C, C,A)
1r→ (A, C,A,A)
1r→ (A,A,B,A)
1r→ (B,B, ? ,A)
1r→ ( ? , ? , ? ,B)

This specifies that for a set of texts all different in the second words but with
equal values in all other words, the exclusive-or of the rightmost ciphertext
words after six rounds of encryption is zero.

One can also specify integrals through the decryption operation. It follows
by easy calculations that the following integral through the decryption rounds

31



can be established.

(C, C,A, C) 1r−1

→ (A, C, C,A)
1r−1

→ (A,A,A, C)
1r−1

→ (A,A,B,A)
1r−1

→ ( ? ,A,B,B)
1r−1

→ ( ? , ? ,B, ? )
When the key is known one can combine the two integrals and specify an
11-round integral

( ? , ? ,B, ? ) 5r→ (C,A, C, C)
6r→ ( ? , ? , ? ,B)

Note that after the first five rounds the halves are swapped, which is the
reason why the above 5-round decryption integral is not identical to the
first five rounds of the 11-round integeral. The existence of the 11-round
integral means that if one knows the value of the key one can find a set
of 232 texts such that the second rightmost words of the plaintexts and the
rightmost words of the ciphertexts are balanced. The time to find this set
of texts is equivalent to doing 232 evaluations of the cipher with a fixed key.
If one has (oracle) access to a “randomly chosen” 128-bit bijection, then it
is not too difficult to find a set of 232 inputs such that the rightmost words
of both inputs and outputs are balanced. If one considers one call to the
oracle access as computationally equivalent to one encryption of the block
cipher (for a fixed key), then the complexity is close to 232 but very likely
strictly larger than 232. So the 11-round integral is a distinguisher for the
block cipher used with a fixed key. One can get stronger distinguishers for
fewer rounds of the cipher by considering fewer rounds of the above integral.
Also one can possibly extend the distinguishers to one additional round by
considering integrals with 264 or 296 texts, but the relevance of such known-
key distinguishers can be discussed and one is nowhere near a distinguisher
on the full 18-round CLEFIA.

3.13 The overall structure

The high-level structure of CLEFIA is well-known as a generalised Feistel
type construction. Also, this structure was used in the design of the block

32



cipher RC6 [27]. This structure appears to be sound and no important weak-
nesses are known for it.

3.13.1 The diffusion matrices

The matrices M0 and M1 are similar in nature to the diffusion matrices of
the AES and have they same strong properties. No (serious) weakness is
known for these constructions.

3.14 The number of rounds

The strongest on reduced-round variants of CLEFIA seems to be the ones
based on impossible differentials. There are impossible differentials for CLE-
FIA reduced to up to nine rounds, but not for more than nine rounds. Let d
denote the maximum number of rounds for which effective attacks exist for
a block cipher. It is a well-known principle to choose the number of rounds
in block ciphers well over d, one straight-forward, known rule of thumb is
to choose 2d rounds. Since CLEFIA seems to be a very secure cipher when
used with 18 rounds and at the same fast in implementation, we feel that
this choice is justified. Adding four more rounds for the 192-bit key ver-
sion and another four rounds for the 256-bit key version are natural choices
and in correspondence with the choice made for the Advanced Encryption
Standard (AES), where two rounds are added, and one round of AES has a
similar complexity to two rounds of CLEFIA. Note that one round of CLE-
FIA modifies only half the block, while one round of the AES modifies the
whole block.

3.15 Implementation aspects

The round function in CLEFIA bears some resemblance with the round func-
tion of the AES. From the latter it is known that the use eight-bit S-boxes
together with the diffusion matrices allow for fast implementation in software.
A similar technique can been used in the implementation of CLEFIA. As a
result one gets a compact and fast implementation of CLEFIA in software.
One point to mention is that an implementation on a 64-bit architecture does
not seem to provide a significant speed-up compared to an implementation
on a 32-bit architecture.
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