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Executive Summary

A few years ago, Garg, Gentry and Halevi (EUROCRYPT 2013) proposed the first candidate
constru­ion of cryptographic multilinear maps, a primitive first envisioned a decade earlier
by Boneh and Silverberg (Contemp. Math. 2003) as a higher-dimensional generalization of
bilinear pairings on elliptic curves.

Boneh and Silverberg themselves had pointed out several interesting applications of
multilinear maps, such as one-round multiparty key agreement, verifiable pseudorandom
fun­ions and e�cient broadcast encryption. Furthermore, following the constru­ion of
Garg et al., a flurry of new research uncovered even more far-reaching applications, including
long-awaited primitives like attribute-based encryption for all circuits and general fun­ional
encryption, fruitful new ideas like witness encryption, and the startlingly powerful notion
of indistinguishability obfuscation.

However, the candidate constru­ion of Garg et al. was not provably secure. As a
result, part of the new research focused on clarifying its security, and on exploring alternate
techniques to achieve multilinear maps.

This document aims at giving a bird’s eye view of the main results so far, in terms
of new definitions, candidate constru­ions and major applications, and to summarize
known attacks against existing schemes, discussing their current status as far as security is
concerned.

This is a very a­ive and rapidly evolving area of research, so we cannot even come
close to an exhaustive survey of existing literature, and although we have strived to take
into account some of the most recent published results as of late 2016, significant shifts in
our understanding of multilinear maps in the near future are not only impossible to rule
out but even likely to occur. Indeed, it has happened on several occasions already that a
newly proposed scheme has been broken, fixed and broken again within the span of a few
weeks.

With those caveats, here are some notable takeaways from the state of the art at this
point in time:

• There are three main constru­ions proposed for multilinear maps: the original
one from Garg, Gentry and Halevi (GGH13), a variant “over the integers” due to
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4 EXECUTIVE SUMMARY

Coron, Lepoint and Tibouchi (CLT13), and a “graph-induced” constru­ion by Gentry,
Gorbunov and Halevi (GGH15).

• Although these constru­ions are conceptually inspired by fully homomorphic encryp-
tion schemes that can be proved secure under well-understood hardness assumptions,
the multilinear map schemes themselves have no proof of security. (Note that the
same is true for bilinear pairings as well).

• Over each of the three constru­ions, there exists a polynomial time attack against the
basic Di�e–Hellman key multiparty exchange protocol. In fa­, the conceptual counterpart
of the CDH assumption fails to hold. As a result, most of the (stronger) assumptions
used to prove the existence of more interesting cryptographic notions like witness
encryption and indistinguishability obfuscation also fail to hold.

• However, this does not necessarily translate to a dire­ attack against the a­ual
instantiations of the primitives themselves. For indistinguishability obfuscation, in
particular, attacks are known against some instantiations, but countermeasures have
been proposed to circumvent them. Thus, there are constru­ions of indistinguishability
obfuscation over GGH13, CLT13 and GGH15 against which no attack is known at the
present time. Whether this will continue to hold is di�cult to predi­.

• Theoretically speaking, and assuming standard cryptographic hardness assumptions,
it is known that indistinguishability obfuscation and secure fun­ional encryption are
essentially equivalent, and imply the existence of secure n-linear maps for polynomially
large n (both in the original sense of Boneh and Silverberg and in the sense of graded
encodings, as introduced by Garg et al.). This means that any alternate method to
constru­ indistinguishability obfuscation or fun­ional encryption would indire­ly
yield secure multilinear maps. Unfortunately, no such method is known at present.

• Conversely, it has also been shown that 5-linear maps for which the (subexponen-
tial) DDH assumption holds are su�cient to obtain indistinguishability obfuscation.
This means that one can bootstrap constant-degree multilinear maps to arbitrary
polynomial degree, and also that we seem to be tantalizingly close to achieving
indistinguishability obfuscation (and hence everything else) from bilinear pairings, a
primitive that we are much more confident does exist. Closing the gap from degree 5
to degree 2, however, appears to be an elusive problem.

• There is no prospe­ of achieving pra­ical levels of e�ciency for any of the primitives
considered in this document in the foreseeable future.
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Chapter 1

Introdu­ion

1.1 From Di�e–Hellman to multilinear maps

“We stand today on the brink of a revolution in cryptography,” wrote Di�e and Hellman
in their seminal New Dire­ions paper from 1976 [DH76], which introduced the main ideas
of public-key cryptography. In particular, they described the well-known key exchange
protocol which bears their name: Alice and Bob can derive a common secret by exchanging
messages publicly on an insecure channel. To do so, they agree on a group G (say a cyclic
subgroup of large prime order q in the multiplicative group F∗p of a finite field Fp) and a
generator g of G. Then Alice and Bob choose random exponents a, b ∈ {0, . . . , q− 1}, and
compute the group elements

A = ga and B = gb

respe­ively. Alice sends A to Bob and Bob B to Alice, and they can then both compute
the common group element gab = Ab = Ba. However, the problem of distinguishing gab

from a random element of G given g, ga and gb is believed to be hard (for the group
G mentioned above, and many other groups like suitably chosen elliptic curves). As a
result, an eavesdropper learns no information about the common secret by intercepting the
communication between the two parties.

As we well know, that idea, and the corresponding Decisional Di�e–Hellman (DDH)
hardness assumption, proved extremely fruitful. It can be used to constru­ semantically
secure homomorphic encryption [ElG85], digital signatures [Sch91], e�cient pseudorandom
fun­ions [NR04], CCA-secure encryption [CS03] and more. And it is cited as one of the
main reason for Di�e and Hellman’s Turing award.

Nevertheless, some cryptographic primitives cannot be constru­ed from DDH. For
example, Papakonstantinou et al. were able to obtain a black-box separation result [PRV12]
between DDH and identity-based encryption (IBE). To constru­ IBE, a more powerful
setting is necessary, and that setting emerged in the early 2000s, bringing about what would
be fair to call a second “revolution in cryptography”: the era of bilinear pairings.

The existence of e�ciently computable bilinear pairings between certain families of
elliptic curve groups was first understood as a cryptanalytic liability [MVO93], but Joux
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noticed that it could be used constru­ively to generalize Di�e–Hellman key exchange to
three parties in one round [Jou04]. Indeed, if G is a cyclic group of prime order q endowed
with a symmetric non degenerate bilinear pairing e : G×G→ GT , Alice, Bob and Charlie
can use it to derive a common secret as follows. They choose a, b, c ∈ {0, . . . , q − 1} at
random and compute

A = ga, B = gb and C = gc

respe­ively, for some agreed upon generator g. They can then all compute the common
value

e(g, g)abc = e(A,B)c = e(B,C)a = e(C,A)b

but an eavesdropper seeing A, B and C cannot distinguish that value from a random
element of GT , assuming the hardness of the decisional bilinear Di�e–Hellman (DBDH)
problem, which is believed to be hard over well-constru­ed pairing-friendly elliptic curves.

Using this new bilinear stru­ure, Boneh and Franklin were then able to constru­ the
first IBE scheme [BF03], opening up the path to numerous new cryptographic notions,
including public-key encryption with keyword search [BDOP04], attribute-based encryption
(for boolean formulas) [GPSW06a] and homomorphic encryption for quadratic polyno-
mials [BGN05]. It also led to more e�cient constru­ions of previous primitives such as
signatures [BLS04], group signatures [BBS04], non-intera­ive zero-knowledge proofs [GS08]
and more. In short, the possibility o�ered by bilinear pairings to carry out not only linear
operations in the exponent of group elements but also one level of multiplication proved to
be particularly fecund. It also earned Joux, Boneh and Franklin the 2013 Gödel prize.

Soon after the cryptographic community realized the power of bilinear maps, Boneh
and Silverberg [BS03] asked the natural question of whether this development could be
pursued further, in such a way that several levels of multiplications could be carried out in
the exponent of group elements. This would be possible using what they called cryptographic
multilinear maps.

1.2 Multilinear maps from geometry?

For cyclic groups G and GT of prime order q, a map e : Gn → GT is said to be a (symmetric)
n-linear map (or just a multilinear map when n is omitted) if for any a1, . . . , an ∈ Z and
g1, . . . , gn ∈ G, we have

e(ga11 , . . . , g
an
n ) = e(g1, . . . , gn)a1···an ,

and furthermore e is non-degenerate in the sense that e(g, . . . , g) is a generator of GT for
any generator g of G. For such a stru­ure to be of cryptographic interest, one needs to be
able to compute e�ciently with it (in the sense that e itself and the group operations on G
and GT are e�ciently computable), and it needs to satisfy some notion of security—the
most basic of which would be to ask that the discrete logarithm problem in G be hard
(which implies that it is hard in GT as well). This is in essence how Boneh and Silverberg
define cryptographic multilinear maps [BS03].
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They observed that if one can constru­ such cryptographic multilinear maps (satisfying
slightly stronger security notions that the basic discrete log one), a number of interesting
cryptographic consequences follow, beyond what can be done with bilinear pairings. In
particular, using an n-linear maps, one can obtain a one-round Di�e–Hellman-like key
exchange protocol between n + 1 parties, as a dire­ generalization of Joux’s protocol.
Indeed, if users U0, . . . , Un want to derive a common secret, they can simply pick random
exponents a0, . . . , an, compute the group elements Ai = gai ∈ G and broadcast them.
They are then able to compute the common value e(g, . . . , g)a0...an : user Uj can obtain
it as e(Aj+1, . . . , An, A0, . . . , Aj−1)

aj . However, under the obvious generalization of the
decisional Di�e–Hellman assumption, that value is indistinguishable from a random element
of GT given only the Ai’s, making the protocol secure against eavesdroppers.

Other applications mentioned by Boneh and Silverberg include e�cient unique signa-
tures and broadcast encryption with short keys and optimal communication complexity. It
turns out that multilinear maps also imply much stronger cryptographic notions, including
indistinguishability obfuscation (see §1.4 below).

So do these multilinear maps exist? The question is especially natural in view of the
fa­ that bilinear pairings on elliptic curves are a special case of a type of multilinear
stru­ure that exists on very large classes of algebraic geometric obje­s. Roughly speaking,
a geometric obje­ (say a proje­ algebraic variety) gives rises to certain groups called
“cohomology groups,” together with multilinear maps between them known as cup-produ­s.
An obje­ of dimension d has cohomology groups of degrees 0 to 2d and degrees add up in
cup-produ­s, so one could in principle constru­ a 2d-linear map from degree 1 to degree
2d from any d-dimensional obje­; in fa­, elliptic curve pairings are essentially of that form.
However, it is unclear in general how to compute on those groups e�ciently (or what the
suitable analogue of pairing-friendly elliptic curves would be).

Boneh and Silverberg carried out a detailed analysis of the most dire­ generalization of
elliptic curves to higher dimensions, namely abelian varieties. As for elliptic curves, their set
of points is endowed with an e�ciently computable group law, and that group is isomorphic
to degree 1 cohomology, so that one can a­ually compute inside that cohomology. This
makes it possible to define multilinear maps in various ways. Unfortunately, Boneh and
Silverberg found that, unlike what happens with elliptic curves, the target group of those
multilinear maps does not appear to lend itself to e�cient arithmetic operations: what one
gets is essentially a higher tensor power of the multiplicative group. For example, over the
finite field Fp, the target group is essentially F∗p, except that ga is represented as the tuple
(ga1 , . . . , gad) ∈ (F∗p)d for any (a1, . . . , ad) such that a = a1 · · · ad. Clearly, one cannot even
e�ciently decide equality in that group without breaking the computational Di�e–Hellman
problem.

More generally, their paper shows that, under widely believed assumptions, it is impossi-
ble to constru­ n-linear maps from geometry whose target group is F∗p itself (as opposed to
a higher tensor power, say) for any n > 2. This does not entirely rule out multilinear maps
from geometry (e.g. one could still conceivably have multilinear maps whose target group
would lie in an elliptic curve or some other group with e�cient arithmetic), but makes it
implausible enough that the problem has only been revisited on a handful of occasions
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since then [RH09]. In any case, after Boneh and Silverberg’s paper, constru­ing multilinear
maps was considered intra­able for at least a decade.

1.3 Fully homomorphic encryption and graded encoding
schemes

New ideas to tackle the problem of obtaining multilinear maps only came about after a third
“revolution” swept the world of cryptography, mainly from the mid-2000s onwards: lattice-
based cryptography, ultimately leading to the constru­ion by Gentry of a fully-homomorphic
encryption scheme [Gen09], which solved a major, 30-year old open problem [RAD78].

Before Gentry, some encryption schemes like those of ElGamal and Paillier [ElG85,
Pai99] had made it possible to carry out either additions or multiplications on ciphertexts.
The pairing-based scheme of Boneh, Goh and Nissim [BGN05] supported arbitrarily many
additions and one level of multiplications. In contrast, fully-homomorphic encryption (FHE)
makes it possible to carry out both additions and multiplications on ciphertexts, arbitrarily
many times (and as a result, any e�cient fun­ion can be evaluated homomorphically on
ciphertexts).

A few years later, this led to the intuition that FHE ciphertexts behave a bit like the
exponents of group elements in a multilinear map. More precisely, they behave similarly to
the exponents of group elements in what Garg, Gentry and Halevi call a graded encoding
scheme [GGH13a]. Roughly speaking, such a scheme is a family of e�cient cyclic groups
G0, . . . ,Gn of the same prime order q together with e�cient non-degenerate bilinear pairings
e : Gi ×Gj → Gi+j whenever i+ j ≤ n. In other words, if we fix a family of generators gi
of the Gi’s in such a way that gi+j = e(gi, gj), we can add exponents within a given group
Gi:

gai · gbi = ga+bi

and multiply exponents from two groups Gi,Gj as long as i+ j ≤ n:

e(gai , g
b
j) = ga·bi+j .

This makes ga1 somewhat similar to an “FHE encryption” of a.
Of course, there are a number of di�erences. First, FHE ciphertexts should be ran-

domized. This is not a serious di�culty: one can allow for randomized representations
of group elements as well, and such representations are in fa­ permitted in Garg et al.’s
definition of a graded encoding scheme. However, one should still make it possible to test
the equality of two (randomized representations of) group elements in Gn, say; this cannot
be done publicly in an FHE scheme, as it would break semantic security. Nevertheless, this
may be doable once some limited information about the FHE secret key is made public.
Finally, a third di�erence is that one should not be able to invert the bilinear pairings, so
the representations of gai and gaj cannot be of the same form when i 6= j. This can be dealt
with by introducing some secret multiplicative fa­or in ciphertexts that will appear at the
power i in the ciphertext corresponding to an element of Gi.
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These intuitive ideas essentially describe how Garg, Gentry and Halevi’s GGH13
multilinear maps [GGH13a] are obtained based on (the large message space, somewhat
homomorphic variant of) Gentry’s FHE scheme [Gen09].

More precisely, Gentry’s scheme is defined over the cyclotomic ring R = Z[x]/(xm + 1)
for some m, with respe­ to a certain principal ideal I = 〈g〉 with small generator g. The
plaintext space consists of small elements in R/I (say polynomials with 0/1 coe�cients)
and a message m is encrypted as c = m + r · g mod q ∈ Rq = R/qR for some small noise
r. In contrast, a GGH13 encoding of m at level i is of the form:

ci =
m + r · g

zi
mod q,

where z is a secret masking element, and one can see that linear operations at a given level
as well as multiplications between levels work as expe­ed (as long as the noise values r
remain appropriately small). Equality tests at level n are carried out using a zero-testing
parameter pzt of the form:

pzt = h · zn · g−1 mod q

where h is small: the idea is that pzt · cn ≡ h · (mg−1 + r) mod q will be small if and only
if m = 0, allowing to test for equality to zero, and then usual equality by linearity.

For Gentry’s scheme to be secure, the generator g of I has to be kept secret, although a
“bad” basis of I consisting of large ve­ors can be published. Since pzt depends on g, we
can see that the zero-testing parameters reveals some information about the FHE secret key
as expe­ed. This partial key leakage, which is inherent to the conceptual constru­ion of
multilinear maps from FHE, is the reason why we are not able to prove the scheme secure
even though the FHE scheme itself has a proof of security.

Soon after Garg et al. published their candidate constru­ion, another FHE-inspired
constru­ion was described by Coron, Lepoint and Tibouchi [CLT13a], related this time to
the FHE scheme “over the integers” of van Dijk et al. [vDGHV10] (or more precisely, on
the batch variant due to Cheon et al. [CCK+13]). The main ingredients of the constru­ion
are essentially the same as those of [GGH13a], although a number of technical details are
di�erent.

Later on, variants of those two constru­ions were proposed to address certain technical
issues, although with limited success [LSS14, CLT15]. In addition, a substantially di�erent
constru­ion (GGH15) was introduced by Gentry, Gorbunov and Halevi [GGH15], inspired
by the LWE-based FHE scheme of Gentry, Sahai and Waters [GSW13]. The fun­ionality
achieved in GGH15 di�ers synta­ically from that of GGH13 and CLT13: instead of being
arranged in a graded stru­ure, the “groups” containing the encodings correspond to edges
on a dire­ed acyclic graph, and two encodings can be multiplied together if and only if
their associated edges are adjacent. It is not immediately obvious how to use that primitive
to constru­ the same cryptographic obje­s as with standard multilinear maps, but Gentry
et al. showed how it can be done in a number of specific instances, including multiparty
key exchange and obfuscation.
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1.4 Some applications of multilinear maps

Multiparty Di�e–Hellman key exchange. As we have mentioned, the most dire­
application of n-linear maps is a one-round protocol for (n+ 1)-way Di�e–Hellman key
exchange. This protocol can also be instantiated in the graded encoding scheme setting of Garg
et al. [GGH13a]. Note however that since encodings are randomized, to derive a common
shared key, the parties need to be able to extra­ some deterministic value depending only on
the underlying “group element” that randomized encoding represent. This procedure is an
extension of the zero-testing algorithm alluded to above, and is part of the formal definition
of a graded encoding scheme. See §2.2 for details, and §2.3 for a formal description of the
multiparty Di�e–Hellman key exchange protocol over graded encoding schemes.

Attribute-based encryption for circuits. One of the great successes of pairing-based
cryptography is the realization of the notion of attribute-based encryption (ABE) [SW05,
GPSW06a]. In a (ciphertext-policy) ABE scheme, users have secret keys associated with
certain sets of attributes, and messages are encrypted with respe­ to policies which are
Boolean fun­ions of the attributes. Thus, a user with attributes x and y can decrypt
ciphertexts associated with the policy x ∧ y, or the policy x ∨ z, but not the policy x ∧ z. A
major challenge in constru­ing ABE is the requirement that the scheme should achieve
collusion-resistance: if Alice has the attributes x, y and Bob has the attributes y, z, they should
not be able to decrypt a ciphertext with policy x ∧ z even when colluding together.

There are constru­ions of ABE based on bilinear pairings that support policies rep-
resented by arbitrary Boolean formulas of the attributes, or more generally by span pro-
grams [GPSW06b], but techniques based on pairings have so far failed to achieve ABE for
arbitrary polynomial-size Boolean circuits. One seems to encounter a fundamental limitation
of bilinearity when trying to obtain collusion-resistance for arbitrary circuits, due to a class
of attack known as backtracking [GGH+13c, §1].

On the other hand, over multilinear maps, relatively dire­ generalizations of the classical
pairing-based constru­ions of ABE yield ABE for all circuits right away, as shown by Garg
et al. [GGH+13c, GGHZ14]. Later on, Gorbunov, Vaikuntanathan and Wee were able
to constru­ attribute-based encryption for circuits from standard lattice assumptions as
well [GVW13], but the problem of a pairing-based realization remains open.

Witness encryption. Shortly after the first multilinear map candidate GGH13 was pro-
posed, Garg, Gentry, Sahai and Waters introduced the intriguing and powerful new notion
of witness encryption, and showed how it can be realized from multilinear maps [GGSW13]. A
witness encryption scheme is defined with respe­ to a certain NP language L, and consists
of two e�cient algorithms: Encrypt(1λ, x,m) takes as input a security parameter, a string
x and a message m, and outputs a ciphertext c; Decrypt(c, w) takes as input a ciphertext
c and a string w, and outputs either a message m′ or ⊥. Corre­ness states that if x is
an instance of L and w is a witness of x ∈ L, then Decrypt(Encrypt(1λ, x,m), w) outputs
the same message m with probability 1. Soundness security states that the encryptions of
distin­ messages with respe­ to a string x /∈ L are indistinguishable.
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In other words, witness encryption makes it possible to encrypt messages with respe­
to an instance x of the language L, and one can decrypt a ciphertext if one knows a witness
to the fa­ that x ∈ L. Security does not imply that knowing a witness is necessary to
decrypt in general. But depending on the language L, it may be the case that instances and
non-instances are computationally indistinguishable without a witness (consider e.g. the
language of Di�e–Hellman pairs over a DDH group), and soundness then implies a form
of semantic security with respe­ to adversary who do not know the witness.

Witness encryption is a powerful notion; it implies strong forms of identity-based
encryption, and even ABE for all circuits in an essentially black-box way [GGSW13]. The
original instantiation was based on a hardness assumption that mimicked the constru­ion
very closely, but constru­ions based on less ad hoc assumptions were later proposed as
well [GLW14, AJN+16].

Fun­ional encryption. The notion of fun­ional encryption is a far-reaching generalization
of ABE introduced by Boneh, Sahai and Waters [BSW11]. In a fun­ional encryption scheme
defined with respe­ to a fun­ionality F : K×X → {0, 1}∗, a user secret key skk is associated
with an element k the set K, and if a ciphertext c is an encryption of x ∈ X , the decryption
algorithm applied to skk and c returns F (k, x). For example, ciphertext-policy ABE is the
special case when elements k of K are sets of attributes, elements of X consist of a pair
(m, f) of a message and a predicate, and the fun­ionality F (k, x) evaluates to m if f(k) is
true and to ⊥ otherwise.

A number of special cases of fun­ional encryption have been described in the context
of pairing-based cryptography, such as predicate encryption for inner-produ­s [KSW08,
OT09], spatial encryption [Ham11] and fun­ional encryption for inner-produ­ fun­ionali-
ties [ABDP15, BJK15], but they tend to be limited to fun­ionalities that are “bilinear” in
some sense.1

In contrast, one of the first results to emerge as a consequence of multilinear maps was
a constru­ion of fun­ional encryption for all circuits [GGH+13b]. That constru­ion is
in fa­ based on the indistinguishability obfuscator proposed in the same paper (see below),
so it relies on multilinear maps only in an indire­ way in some sense. However, other
instantiations based dire­ly on multilinear maps (i.e. without obfuscation) have later been
described, starting with the scheme of Garg, Gentry, Halevi and Zhandry [GGHZ16].

Indistinguishability obfuscation. Perhaps the most impressive result that followed the
GGH13 multilinear map candidate was the description by Garg et al. [GGH+13b] of a
possible constru­ion of indistinguishability obfuscation for all circuits. Program obfuscation,
roughly speaking, aims at making it possible to publish programs whose fun­ionality
depends on some secrets in such a way that even the source code of the program will not
reveal those secrets. They are, in some sense, hidden in plain sight.

1More general notions have also been achieved over lattices, such as leveled predicate encryption for
circuits [GVW15], and even some strong forms of fun­ional encryption for circuits with a single-bit out-
put [GKP+13]. Those notions, however, are weaker than the fun­ional encryption schemes achieved from
multilinear maps.
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Strong forms of obfuscation can be achieved for very limited classes of fun­ionalities
using standard cryptographic techniques. For example, one can publish the source code of
a program that checks if its input is equal to a secret password (a so-called “point fun­ion”)
without revealing that password: simply put in the program the image of the password
under some one-way fun­ion. But being able to do the same with much more general
classes of fun­ion is immensely powerful: for example, it allows to convert any symmetric
key encryption scheme to public-key (just publish as “public key” the obfuscated encryption
algorithm with an embedded symmetric key).

Unfortunately, as part of their study of various notions of obfuscation, Barak et al.
found that the most natural notion of program obfuscation (“black-box obfuscation”) is
in fa­ impossible to achieve for general programs [BGI+01, BGI+10]. However, they also
introduced weaker notions for which they could not obtain an impossibility result, including
indistinguishability obfuscation, which Goldwasser and Rothblum later showed to be, in a
precise technical sense, the best possible obfuscation [GR07].

An indistinguishability obfuscator O for a class C of circuits is a circuit transformation
which is fun­ionality-preserving (i.e. for a circuit C ∈ C , O(C) is another circuit which
agrees with C on all inputs) and guarantees that for two circuits C1, C2 ∈ C that are
fun­ionally equivalent (i.e. agree on all inputs), then O(C1) and O(C2) are computationally
indistinguishable. Note that it is not immediately clear what that notion could be useful
for: for example, since point fun­ions associated with distin­ passwords are inequivalent,
there is no guarantee that applying an indistinguishability obfuscator to such a fun­ion
will hide the password.

Nevertheless, most readers of Barak et al. and Goldwasser–Rothblum would probably
have assumed that an impossibility result for indistinguishability obfuscation to be a lot
more likely than an instantiation, so Garg et al.’s constru­ion [GGH+13b] came as a great
surprise. Moreover, their paper demonstrated that the notion is in fa­ a­ually extremely
powerful, since it was su�cient to achieve the long-awaited constru­ion of fun­ional
encryption. Following their work, a number of papers, such as [SW14], developed more
systematic techniques to use indistinguishability obfuscation, and it is now understood to
be powerful enough to constru­, in the words of Bitansky and Vaikuntanathan, “almost
any known cryptographic obje­.” [BV15]

Relations between some of these notions. It is interesting to note that the more pow-
erful notions described above, namely fun­ional encryption and indistinguishability obfus-
cation, turn out to be essentially equivalent, and also equivalent to multilinear maps.

More precisely, as we have said, indistinguishability obfuscation (together with some
standard primitives like PRFs) implies (compa­, multibit) fun­ional encryption for all
circuits [GGH+13b], even with adaptive security [Wat15] (and in fa­, there is a generic
conversion from sele­ive to adaptive security [ABSV15]). Conversely, (compa­, multibit)
fun­ional encryption for all circuits is su�cient to achieve indistinguishability obfusca-
tion [AJ15, BV15]. In fa­, recent candidate constru­ions of indistinguishability obfuscation
such as [LV16, Lin16, AS16] have used some form of fun­ional encryption as an intermedi-
ate building block.
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In addition, it is now known that if n-linear maps satisfying certain DDH-like security
notions exist for some su�ciently large constant n (the current record is n = 5, obtained
by Lin in [Lin16] and Ananth and Sahai in [AS16]), then indistinguishability obfusca-
tion/fun­ion encryption exist as well. And conversely, Albrecht et al. have shown that
indistinguishability obfuscation (again together with standard primitives like homomorphic
encryption and NIZK) is enough to constru­ multilinear maps [AFH+16].

This means that constru­ing multilinear maps, fun­ional encryption and indistin-
guishability obfuscation are equivalent goals, and future constru­ions could be obtained
from any of those primitives.

1.5 Attacks against multilinear map constru­ions

If secure, we have seen that candidate constru­ions of multilinear maps have very interesting
consequences in cryptography (and we have only touched upon a few among many). The
a­ual security pi­ure is far from clear, however.

Indeed, attacks have been demonstrated against all constru­ions so far, and we describe
a number of them in details in Chapter 3. The current situation is that, due to a long
series of attacks [CHL+15, CLT14, CGH+15, CFL+16, HJ16, CLLT16a], multiparty Di�e–
Hellman key exchange is broken over all of the proposed candidates. In addition, a number
of attacks have been demonstrated against several constru­ions of indistinguishability
obfuscation [MSZ16a, CGH16, ADGM16, CLLT17], but not all schemes are broken yet.

We can also mention that GGH13 and CLT13 are both broken in classical subexponential
time and quantum polynomial time. In the case of CLT13, it is because it relies on the
hardness of fa­oring. In the case of GGH13, it is a consequence of recent progress on the
cryptanalysis of some ideal lattice assumptions in the presence of very small noise [ABD16].





Chapter 2

Definitions and Constru­ions

2.1 Multilinear maps

2.1.1 The Boneh–Silverberg setting

Boneh and Silverberg introduced the notion of multilinear maps in a cryptographic set-
ting [BS03]. The definition they adopted for their purposes was touched upon in §1.2. We
recall it more formally below.

De�nition 1. Let G and GT be cyclic groups (denoted additively), and e : Gκ → GT a mapping
for some integer κ ≥ 1. We say that e is a κ-linear map (or simply a multilinear map) when the
following conditions hold:

1. G and GT are of the same prime order;

2. for any a1, . . . , aκ ∈ Z and g1, . . . , gκ ∈ G, we have

e(a1 · g, . . . , aκ · g) = a1 · · · aκ · e(g, . . . , g);

3. if g is a generator of G, then e(g, . . . , g) is a generator of GT .

2.1.2 E�cient algorithms

Boneh and Silverberg called a multilinear map as above a cryptographic multilinear map when
the groups G and GT admit e�cient group operations, when the map e itself is e�ciently
computable, and when the scheme satisfies some notion of security like the hardness of
discrete logarithms in G. Since e�ciency and security are asymptotic notions, they can
only make sense with respe­ to some instance generation algorithm.

Following [GGH12], one can capture these notions (minus the security, which can be
definitely independently by a suitable game) by saying that a multilinear map scheme is a tuple
of algorithms (InstGen, add, neg,EncTest,map) for instance generation, group operations,
membership testing and multilinear pairing, which can be described as follows.

17
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Instance generation. InstGen(1λ, 1κ) is an e�cient randomized algorithm that takes as
input the security parameter λ and the multilinearity degree κ, and outputs a description of
the groups G and GT , their order q, a description of the multilinear map e : Gκ → GT , and
a string g ∈ {0, 1}∗ encoding a generator of G. The tuple (G,GT , q, e) is denoted by pp.

Membership testing. EncTest(pp, b, x) is an e�cient, deterministic algorithm that takes
as input the parameters pp, a bit b and a string x ∈ {0, 1}∗ and decides whether x is a
valid representation of an element of G (resp. GT ) when b = 0 (resp. b = 1). It is assumed
that representations are unique, so we simply denote validity by membership: x ∈ G
(resp. x ∈ GT ).

Group operations. add(pp, b, x, y) is e�cient, deterministic, and returns x+ y when b = 0
and x and y are both elements of G (resp. b = 1 and x, y ∈ GT ). Note that this is su�cient
to e�ciently compute a · x for a ∈ Zq by double-and-add. Similarly, neg(pp, b, x) computes
−x.
Multilinear map. map(pp, x1, . . . , xκ) is e�cient, deterministic, and returns the target
group element e(x1, . . . , xκ) ∈ GT .

2.1.3 Symmetry vs. asymmetry

The multilinear maps describe above are symmetric in the sense that all the source group
are the same (or equivalently, are e�ciently isomorphic). It is straightforward to extend the
definition to multilinear maps of the form e : G1×· · ·×Gκ → GT where the groupsGi are all
of the same prime order, but there does not necessarily exist e�cient isomorphisms between
them. That setting occurs frequently with elliptic curves (for type II and type III pairings in
the sense of [GPS08]), and has been described for multilinear maps by Rothblum [Rot13].

2.2 Graded encoding schemes

As discussed in §1.3, the fun­ionality achieved by constru­ions such as [GGH13a] and
[CLT13a] di�er from the Boneh–Silverberg definition above in at least two important aspe­s:

• contrary to the Boneh–Silverberg setting where elements of the source group are
combined in one go to form an element of the target group, encodings are arranged
in several levels, and one can pair elements at level i and level j to obtain an element
at level i+ j, and so on several times;

• a single “exponent” can be represented at a given level by many di�erent encodings.

The corresponding notion is captured by the definition of a graded encoding system, and
its algorithmic description, as presented below.

2.2.1 Graded encoding system

We recall the formal definition of a κ-graded encoding system from [GGH13a]. For simplicity
we only consider the symmetric case below. See [GGH12, Appendix A] for the description
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of a more general framework that can handle asymmetric multilinear maps and gradings
with respe­ to more complicated monoids.

De�nition 2. A κ-graded encoding system for a ring R is a system of sets S = {S(α)
v ∈

{0, 1}∗ : v ∈ N, α ∈ R}, with the following properties:

1. For every v ∈ N, the sets {S(α)
v : α ∈ R} are disjoint.

2. There are binary operations + and − (on {0, 1}∗) such that for every α1, α2 ∈ R, every
v ∈ N, and every u1 ∈ S

(a1)
v and u2 ∈ S

(a2)
v , it holds that u1 + u2 ∈ S

(α1+α2)
v and

u1 − u2 ∈ S(α1−α2)
v where α1 + α2 and α1 − α2 are addition and subtra­ion in R.

3. There is an associative binary operation × (on {0, 1}∗) such that for every α1, α2 ∈ R,

every v1, v2 with 0 ≤ v1 + v2 ≤ κ, and every u1 ∈ S(α1)
v1 and u2 ∈ S(α2)

v2 , it holds that

u1 × u2 ∈ S(α1·α2)
v1+v2 where α1 · α2 is multiplication in R.

2.2.2 E�cient procedures

We also recall the definition of the procedures for manipulating encodings. As previously
we consider only the symmetric case.

Instance generation. The randomized InstGen(1λ, 1κ) takes as inputs the parameters λ
and κ, and outputs (pp,pzt), where pp is a description of a κ-Graded Encoding System as
above, and pzt is a zero-test parameter.

Ring sampler. The randomized samp(pp) outputs a “level-zero encoding” a ∈ S(α)
0 for a

nearly uniform element α ∈R R. Note that the encoding a does not need to be uniform in
S
(α)
0 .

Encoding. The (possibly randomized) enc(pp, i, a) takes as input a level-zero encoding
a ∈ S(α)

0 for some α ∈ R and a level i ≤ κ, and outputs a level-i encoding u ∈ S(α)
i for the

same α.

Rerandomization. The randomized reRand(pp, i, u) re-randomizes encodings relative to
the same level i. Specifically, given an encoding u ∈ S(α)

v , it outputs another encoding
u′ ∈ S(α)

v . Moreover for any two u1, u2 ∈ S(α)
v , the output distributions of reRand(pp, i, u1)

and reRand(pp, i, u2) are nearly the same.

Addition and negation. Given pp and two encodings relative to the same level, u1 ∈ S(α1)
i

and u2 ∈ S(α2)
i , we have add(pp, u1, u2) ∈ S(α1+α2)

i and neg(pp, u1) ∈ S(−α1)
i . Below we

write u1 + u2 and −u1 as a shorthand for applying these procedures.

Multiplication. For u1 ∈ S
(α1)
i and u2 ∈ S

(α2)
j , we have mul(pp, u1, u2) = u1 × u2 ∈

S
(α1·α2)
i+j .

Zero-testing. The procedure isZero(pp,pzt, u) outputs 1 if u ∈ S(0)
κ and 0 otherwise.

Extra­ion. The procedure extra­s a random fun­ion of ring elements from their level-κ
encoding. Namely ext(pp,pzt, u) outputs s ∈ {0, 1}λ, such that:
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1. For any α ∈ R and u1, u2 ∈ S(α)
κ , ext(pp,pzt, u1) = ext(pp,pzt, u2).

2. The distribution {ext(pp,pzt, u) : α ∈R R, u ∈ S(α)
κ } is nearly uniform over {0, 1}λ.

2.2.3 Approximate graded encodings

As pointed out in [GGH13a], a­ual constru­ions only achieve a slightly relaxed definition
of isZero and ext, where isZero can still output 1 even for some non-zero encoding u with
negligible probability, and ext can extra­ di�erent outputs when applied to encodings of
the same elements, also with negligible probability. See [GGH12, §2.2.2 and A.2] for the
corresponding definitions.

2.3 Security de�nitions: the example of Di�e–Hellman key
exchange

The sheer number of subtly or wildly di�erent hardness assumptions used for security
proofs in the field of pairing-based cryptography has been the obje­ of many comments, for
better or worse [Boy08, KM10]. Unsurprisingly, the more convoluted setting of multilinear
maps and graded encoding schemes has seen the use of an even broader range of potential
hard problems (see e.g. the discussion in [LV16, §1] for a discussion of the particular case
of obfuscation candidates). It seems di�cult, at this stage, to point to a particular security
definition that could be singled out as the corre­ desirable security goal when trying to
constru­ multilinear maps.

Nevertheless, one simple security definition has been emphasized in a number of
constru­ion papers, including [GGH13a, CLT13a, LSS14, CLT15], namely the graded
encoding analogue of the decisional Di�e–Hellman assumption. Since it is so common, we
recall it here, and add a few comments afterwards discussing the place of that assumption
within the literature.

2.3.1 The graded decisional Di�e–Hellman problem

In their original paper [GGH13a], Garg et al. introduced the graded decisional Di�e–Hellman
assumption (GDDH) as a security goal for graded encoding scheme. It is defined as
follows (this is the definition from [LSS14], which looks slightly di�erent from the one
in [GGH13a, CLT13a], but is easily seen to be equivalent as long as reRand behaves
corre­ly).

Consider the following procedure, parametrized by λ and κ:

1. Run InstGen(1λ, 1κ) to obtain (pp,pzt).

2. Sample aj ← samp(pp) for 0 ≤ j ≤ κ.

3. Compute uj ← reRand(pp, 1, enc(pp, 1, aj)) for 0 ≤ j ≤ κ.

4. Sample b← samp(pp).
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5. Compute the produ­ encoding u∗ = a0 ·
∏κ
j=1 ui of the uj ’s by repeated application

of the mul procedure (encoding at level κ).

6. Set v(0) = reRand(pp, κ, u∗).

7. Set v(1) = reRand(pp, κ, enc(pp, κ, b)).

8. Pick a bit β uniformly at random and set v ← v(β).

The GDDH assumption asserts that an e�cient adversary receiving as input the values
(p∗, pzt, u0, . . . , uκ, v) can only guess the bit β with an advantage negligible in the security
parameter λ.

Clearly, the GDDH assumption implies that the N -party key exchange protocol defined
below is passively secure.

Setup(1λ, 1N ). Output (pp,pzt)← InstGen(1λ, 1κ) as the public parameter, with κ = N−1.

Publish(pp, i). Each party i samples a random ci ← samp(pp) as a secret value, and
publishes as the public value the corresponding level-1 encoding, computed as c′i ←
reRand(pp, 1, enc(pp, 1, ci)).

KeyGen(pp,pzt, i, ci, {c′j}j 6=i). Each party i computes c̃i = ci ·
∏
j 6=i c

′
j , and uses the

extra­ion routine to locally compute the common secret s← ext(pp,pzt, c̃i).

2.3.2 Discussion

The GDDH assumption does capture the security of multiparty key exchange (almost
tautologically so!), but may not otherwise be a particularly useful security definition. The
hardness assumptions under which more interesting primitives like witness encryption (e.g.
in [GGSW13]) and indistinguishability obfuscation (e.g. in [PST14]) have been shown to
exist are usually considerably more intricate, and not much has been done over multilinear
maps with Di�e–Hellman-like assumptions. As a recent result counter to that trend, albeit
in the Boneh–Silverberg setting rather than over graded encoding schemes, one can mention
the surprising constru­ion by Lin of indistinguishability obfuscation from (subexponential)
DDH over 5-linear maps [Lin16].

Another issue with the GDDH assumption is that, unfortunately, proposed multilinear
candidates have turned out not to satisfy it: as we will see in the next chapter, attacks
have been found against multiparty Di�e–Hellman over the graded encoding schemes
from [GGH13a, CLT13a] and their variants! This is of course considered a serious problem.
A silver lining, however, is that GDDH is not as basic a problem as it sounds.

Indeed, one particular feature of the multiparty Di�e–Hellman scheme as described
above is that it relies on the possibility for all users to publicly generate and rerandomize
their own encodings. In contrast, in many other schemes, including witness encryption
and indistinguishability obfuscation, the ability to generate encodings of new values is
only used by the same user that generates the system parameters. In those settings, it
is thus possible to require secret information in enc and reRand, whereas only arithmetic
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operations and zero-testing/extra­ion remain public procedures. This leads to the definition
of what Albrecht et al. call secret-key graded encoding schemes [ACLL15], which tend to be
much more di�cult to attack than Di�e–Hellman key exchange. Nevertheless, attacks have
indeed been found in that setting as well (e.g. against constru­ions of indistinguishability
obfuscation [CGH+15, MSZ16a, CLLT17]), as we will see in the next chapter.

2.4 A concrete instantiation: the CLT13 graded encoding
scheme

The graded encoding schemes from [GGH13a] and [CLT13a] are very similar to each other,
but a thorough presentation of GGH13 requires somewhat more background material,
especially on algebraic number theory and Gaussian sampling on lattices. Therefore, for
simplicity’s sake, we only give a complete description of the CLT13 scheme. We refer back
to §1.3 above for a conceptual-level description of GGH13, and to §2.4.3 below for a short
rundown of the main di�erences between GGH13 and CLT13.

2.4.1 The shape of CLT13 encodings

In the “integer-based” scheme of [CLT13a], a level-k encoding of a short integer ve­or
m = (mi) ∈ Zn is an integer c such that for all 1 ≤ i ≤ n:

c ≡ ri · gi +mi

zk
(mod pi) (2.1)

where the ri’s are ρ-bit random integers (specific to the encoding c), with the following
secret parameters: the pi’s are η-bit prime integers, the gi’s are α-bit primes, and the
denominator z is a random (invertible) integer modulo x0 =

∏n
i=1 pi. The integer c is

therefore well-defined modulo x0, where x0 is made public. Since the pi’s must remain
secret, the user cannot encode the ve­ors m ∈ Zn by CRT dire­ly from (2.1); instead one
includes in the public parameters a set of ` level-0 encodings x′j of random ve­ors aj ∈ Zn,
and the user can generate a random level-0 encoding by computing a random subset sum
of those x′j ’s.

From (2.1) we see that each integer mi is a­ually defined modulo gi. Therefore, the
CLT13 scheme encodes ve­ors m from the ring R = Zg1 × · · · × Zgn .

2.4.2 Detailed description of CLT13

System parameters. The main parameters are the security parameter λ and the required
multilinearity level κ ≤ poly(λ). Based on λ and κ, we choose the ve­or dimension n, the
bit-size η of the primes pi, the bit-size α of the primes gi, the maximum bit-size ρ of the
randomness used in encodings, and various other parameters that will be specified later; the
constraints that these parameters must satisfy are described in the next se­ion. For integers
z, p we denote the redu­ion of z modulo p by (z mod p) or [z]p with −p/2 < [z]p ≤ p/2.
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Instance generation. (pp,pzt) ← InstGen(1λ, 1κ). This algorithm generates n secret
random η-bit primes pi and computes x0 =

∏n
i=1 pi. It then generates a random in-

vertible integer z modulo x0, n random α-bit prime integers gi, and a secret matrix
A = (aij) ∈ Zn×`, where each component aij is randomly generated in [0, gi) ∩ Z. It
also generates an integer y, three sets of integers {xj}τj=1, {x′j}`j=1 and {Πj}nj=1, a zero-
testing ve­or pzt, and a seed s for a strong randomness extra­or; the shape of these
elements is detailed below in the respe­ive algorithms where they intervene. The parame-
ters pp =

(
n, η, α, ρ, β, τ, `, y, {xj}τj=1, {x′j}`j=1, {Πj}nj=1, s

)
and pzt are finally output and

made public.

Sampling level-zero encodings. c ← samp(pp). Recall that the parameters pp contain
a set of ` integers x′j , where each x

′
j encodes at level-0 the column ve­or aj ∈ Zn of the

secret matrix A = (aij) ∈ Zn×`. More precisely, the integers x′j are generated by Chinese
remaindering, subje­ to the condition that:

x′j ≡ r′ij · gi + aij (mod pi) for 1 ≤ j ≤ `, (2.2)

where the r′ij ’s are randomly generated in (−2ρ, 2ρ) ∩ Z.
Using those values x′j , the randomized sampling algorithm samp(pp) works as follows:

it samples a random binary ve­or b = (bj) ∈ {0, 1}` and outputs the level-0 encoding

c =
∑̀
j=1

bj · x′j mod x0.

From Equation (2.2), this gives c ≡
(∑`

j=1 r
′
ijbj
)
· gi +

∑`
j=1 aijbj (mod pi). As required,

the output c is a level-0 encoding:

c ≡ ri · gi +mi (mod pi) (2.3)

of some ve­or m = A · b ∈ Zn which is a random subset-sum of the column ve­ors aj .
The sizes of the redu­ions [c]pi are then well controlled for all i:

|ri · gi +mi| ≤ ` · 2ρ+α.

A left-over hash lemma argument ensures that m will be statistically close to uniform
over R = Zg1 × · · · × Zgn for suitably chosen parameters. See [CLT13a] for details.

Encodings at higher levels. ck ← enc(pp, k, c). To allow encoding at higher levels, a
level-one random encoding of the ve­or 1 was published as part of the public parameters
pp. That value is an integer y is generated in such a way that:

y ≡ ri · gi + 1

z
(mod pi)

for random integers ri ∈ (−2ρ, 2ρ) ∩ Z.
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Given a level-0 encoding c of m ∈ Zn as given by (2.3), a level-1 encoding of the same
m can be obtained by computing c1 = c · y mod x0. Indeed, we then have:

c1 ≡
r
(1)
i · gi +mi

z
(mod pi) (2.4)

for some integers r(1)i , and we get |r(1)i · gi +mi| ≤ ` · 22(ρ+α) for all i. More generally to
generate a level-k encoding we compute ck = c0 · yk mod x0.

Note however that this element should not be published as is, since it would then be
possible to go back to the lower-level encoding c by simply dividing by y, thus inverting the
multilinear map. Instead the level-1 encoding c1 should first be re-randomized into a new
level-1 encoding c′1 for the same ve­or m, but whose distribution is otherwise independent
of the original c. This is done with the following algorithm.

Rerandomization. c′ ← reRand(pp, k, c). To allow rerandomization of encodings at level
k = 1, the public parameters pp contain a set of n integers Πj which are all level-1 random
encodings of zero:

Πj ≡
$ij · gi
z

(mod pi) for 1 ≤ j ≤ n.

The matrix Π = ($ij) ∈ Zn×n is a diagonally dominant matrix generated as follows: the
non-diagonal entries are randomly and independently generated in (−2ρ, 2ρ)∩Z, while the
diagonal entries are randomly generated in (n2ρ, n2ρ + 2ρ) ∩ Z.

The parameters pp also contain a set of τ integers xj , each one of which is a level-1
random encoding of zero:

xj ≡
rij · gi
z

(mod pi) for 1 ≤ j ≤ τ ,

and where the column ve­ors of the matrix (rij) ∈ Zn×τ are randomly and independently
generated in the half-open parallelepiped spanned by the columns of the previous matrix
Π. This somewhat complicated choice is made to ensure a proper rerandomization.

Given a level-1 encoding c1 as given by (2.4), the procedure reRand rerandomizes it by
adding a random subset-sum of the xj ’s and a linear combination of the Πj ’s:

c′1 = c1 +
τ∑
j=1

bj · xj +
n∑
j=1

b′j ·Πj mod x0 (2.5)

where bj ← {0, 1}, and b′j ← [0, 2µ) ∩ Z. One of the main technical di�culties of the
constru­ion of [CLT13a] is the proof that the distribution of c′1 is nearly independent of
the input c1 (aside from the fa­ that both encodings correspond to the same ve­or m).
This is shown using a “left-over hash lemma over lattices”. We refer to the original paper
for details.

Adding and multiplying encodings. It is clear that one can homomorphically add
encodings. Moreover the produ­ of κ level-1 encodings ui can be interpreted as an
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encoding of the produ­. Namely, given level-one encodings uj of ve­ors mj ∈ Zn for
1 ≤ j ≤ κ, with uj ≡ (rij · gi +mij)/z (mod pi), the produ­

u =

κ∏
j=1

uj mod x0

satisfies:

u ≡

κ∏
j=1

(rij · gi +mij)

zκ
≡
ri · gi +

( κ∏
j=1

mij

)
mod gi

zκ
(mod pi)

for some ri ∈ Z. This is a level-κ encoding of the ve­or m obtained by componentwise
produ­ of the ve­ors mj , as long as

∏κ
j=1(rij · gi +mij) < pi for all i. When computing

the produ­ of κ level-1 encodings from reRand and one level-0 encoding from samp as in
multiparty Di�e–Hellman key exchange, one can easily check that |ri| ≤ (4n22µ+ρ+α)κ · ` ·
2ρ+1 for all i.

Zero testing. isZero(pp,pzt, uκ)
?
= 0/1. Zero testing of top level encodings is carried out

with the parameter pzt obtained as follows as part of instance generation. First, an integer
matrix H = (hij) ∈ Zn×n is randomly generated in such a way that H is invertible over
Z and both ‖HT ‖∞ ≤ 2β and ‖(H−1)T ‖∞ ≤ 2β , for some parameter β; here ‖ · ‖∞ is
the operator norm on n × n matrices with respe­ to the `∞ norm on Rn. A technique
for generating such an H is presented in the appendix of [CLT13b]. Then, pzt ∈ Zn is
computed as:

(pzt)j =
n∑
i=1

hij ·
(
zκ · g−1i mod pi

)
·
∏
i′ 6=i

pi′ mod x0. (2.6)

To determine whether a level-κ encoding c is an encoding of zero or not, one computes
the ve­or ω = c · pzt mod x0 and tests whether ‖ω‖∞ is small: isZero(pp,pzt, c) returns 1
if ‖ω‖ < x0 · 2−ν and 0 otherwise, for some parameter ν.

The authors of [CLT13a] show that suitable choices of β and ν can ensure that this
zero-testing procedure is then corre­ for all encodings c whose noise coe�cients are
appropriately bounded.

Extra­ion. sk ← ext(pp,pzt, c). To extra­ a random value depending only on the ve­or
m encoded in a level-κ encoding c, one proceeds as follows: multiply it by the zero-testing
parameter pzt modulo x0, colle­ the ν most significant bits of each of the n components of
the resulting ve­or, and apply a strong randomness extra­or (using the seed s from pp).
More formally:

ext(pp,pzt, c) = Extracts
(
msbsν(c · pzt mod x0)

)
where msbsν extra­s the ν most significant bits of the result. If two encodings c and c′

encode the same m ∈ Zn, one can show (using the precise result establishing the corre­ness
of zero-testing) that ‖(c − c′) · pzt mod x0‖∞ < x0 · 2−ν−λ, and therefore we expe­ that
ω = c · pzt mod x0 and ω′ = c′ · pzt mod x0 agree on their ν most significant bits, and
therefore extra­ to the same value. And conversely if the encoded values are distin­. We
refer to [CLT13a] for the nitty-gritty details.



26 CHAPTER 2. DEFINITIONS AND CONSTRUCTIONS

2.4.3 Di�erences with GGH13

Recall from §1.3 that the graded encoding scheme from [GGH13a] is defined over the
cyclotomic ring R = Z[x]/(xm + 1), with respe­ to a certain principal ideal I = 〈g〉 with
secret, small generator g. A ve­or m ∈ R with small coe�cients is encoded at level k by
an element of the form:

ck =
m + r · g

zk
mod q,

where z is the secret masking element. This is essentially the same as (2.1) above.
A crucial di�erence, however, is the shape of the zero-testing parameter. In GGH13, it

is simply of the form:
pzt = h · zκ · g−1 mod q

with h small. Indeed, multiplying a level-κ encoding cκ of m gives:

pzt · cκ ≡ h · (mg−1 + r) mod q

which is small when m = 0, but large otherwise since g−1 is expe­ed to be of full size
modulo q.

Adopting a similar zero-testing element pzt = hzκ/g mod x0 in the CLT13 setting,
however, does not work. This is because multiplying that value with a level-κ encoding
cκ yields an integer modulo x0 whose redu­ions modulo all of the prime fa­ors pi of x0
are small. But since those prime fa­ors must be kept secret, there is no way of checking
that dire­ly. This is the reason why the ve­or pzt in CLT13 has the di�erent shape (2.6),
involving extra fa­ors of the form

∏
j 6=i pj .

Other di�erences between the GGH13 and CLT13 constru­ions mainly reside in the
technical details of how various properties of the schemes (such as corre­ sampling and
rerandomization) are proved in both settings. And of course, they have di�erent properties
in terms of security.

2.5 GGH15 and the graph-induced approach

As mentioned in §1.3, the third main constru­ion of multilinear maps after [GGH13a]
and [CLT13a] is due to Gorbunov, Gentry and Halevi [GGH15] and di�ers substantially
from the previous constru­ions even in synta­ic terms. The primitive that the authors
achieve is not a graded-encoding scheme, but what they call a graph-induced encoding scheme.
In what follows, we recall the definition of that primitive, and give a description of the
scheme they propose.

2.5.1 Graph-induced encoding scheme

The primitive constru­ed in [GGH15] is parametrized by a certain dire­ed acyclic graph,
and encodings are associated to edges (or more precisely, paths of edges) on that graph.
Encodings on the same path can be combined linearly, and multiplication is permitted
between encodings if and only if their associated paths are adjacent. These properties
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are captured by saying that a graph-induced encoding scheme is a tuple (PrmGen, InstGen,
Sample, Enc, add, neg, mult, ZeroTest, Extract) of e�cient algorithms described as follows.
These procedures are subje­ to some technical corre­ness conditions for which we refer
to [GGH15]; the paper also discusses possible variants that we do not address in this
document.

Parameter generation. PrmGen(1λ, G) takes as inputs the security parameter λ and the
underlying dire­ed graph G, and outputs the global system parameters gp, including in
particular the graph G, a description of the plaintext ring R, and a distribution χ over R
from which plaintexts are sampled.

Instance generation. InstGen(gp) takes as inputs the system parameters and outputs the
secret and public parameters sp, pp.
Ring sampler. The randomized Sample(pp) algorithm outputs an element of the plaintext
ring R sampled according to the distribution χ.

Encoding. Enc(sp, p, α) takes as input the secret parameters, a path p = u v and a ring
element α ∈ R in the range of Sample, and outputs an encoding up of α according to the
path p.

Addition, negation and multiplication. The arithmetic procedures add(pp, up, u′p),
neg(pp, up) and mult(pp, up, u′p′) are deterministic and take as input the public param-
eters together with some encodings.

Negation takes an encoding up of some α ∈ R with respe­ to a path p, and returns
an encoding of −α relative to the same path p. Addition takes encodings up, u′p of some
α, α′ ∈ R with respe­ to the same path p, and returns an encoding of α+ α′ relative to p.
Finally, multiplication takes encodings up, u′p′ of α, α

′ ∈ R with respe­ to paths p, p′ which
are consecutive (i.e. p = u v and p′ = v  w), and returns an encoding of α · α′ with
respe­ to the composed path u w.

Zero-testing. The procedure ZeroTest(pp, u) is deterministic, and decides whether a given
encoding u is an encoding of 0 or not.

Extra­ion. The procedure Extract(pp, u) is deterministic, and returns a λ-bit string
depending only on the underlying plaintext α of the encoding u.

2.5.2 The GGH15 instantiation

We now describe the candidate graph-induced encoding scheme proposed by Gentry et
al. in [GGH15]. Their paper a­ually describes several variants; we focus here on the
commutative, ring based version, which is the one they use to achieve multiparty Di�e–
Hellman key exchange.

That scheme is defined over the cyclotomic ring R = Z[x]/(xn+1). Plaintexts are small
elements s in that ring, sampled according to a Gaussian distribution χ. Public parameters
consist in particular of row ve­ors Av ∈ Rmq (where Rq = R/qR) associated to the vertices
v of the underlying graph. An encoding of s associated with a path u v in the graph is
then a matrix D ∈ Rm×m with small coe�cients such that:

Au ·D = s ·Av + E (mod q)
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for some small error ve­or E ∈ Rm. Such encodings D can be generated given some secret
trapdoor information generated along with the public ve­ors Av, using classical lattice
techniques [GPV08, MP12]. Formally speaking, the graph-induced encoding procedures
can thus be described as follows.

Parameter generation. PrmGen(1λ, G) computes the system parameters gp, which consist
of the graph G, the description of the cyclotomic ring R, the ve­or dimension m, the
modulus q, the plaintext Gaussian distribution χ, a dispersion parameter σ used in trapdoor
sampling, and the number of most significant bits t used for zero-testing and extra­ion.

Instance generation. InstGen(gp) uses the trapdoor sampling algorithm of Micciancio
and Peikert [MP12] to generate the ve­ors Av for all vertices v in the underlying graph
G, together with the corresponding trapdoor information τv. The algorithm also samples
a seed and some extra information for randomness extra­ion. The ve­ors Av and the
extra­ion information form the public parameters pp, whereas the trapdoors τv form the
secret parameters sp.
Ring sampler. The randomized Sample(pp) simply samples an element s ∈ R according
to the Gaussian distribution χ.

Encoding. Enc(sp, p, s): to sample an encoding for s ∈ R along the path p = u  v,
this algorithm first samples an error ve­or E ∈ Rm according to χm, and computes
V = s · Av + E. It then uses the trapdoor information τu and the Micciancio–Peikert
algorithm [MP12] to obtain a small matrix D ∈ Rm×mq such that D ·Au = V over Rq. This
matrix D is the required encoding.

Addition, negation and multiplication. Addition, negation and multiplication are the
corresponding operations dire­ly on matrices. It is easy to see that they behave as expe­ed.
Indeed, in the case of addition, if D1 and D2 are encodings of s1, s2 relative to the same
path u v, so we can write:

Au ·D1 = s1 ·Av + E1 (mod q)

Au ·D2 = s2 ·Av + E2 (mod q)

we obtain:
Au · (D1 + D2) = (s1 + s2) ·Av + E1 + E2 (mod q).

Similarly, two encodings D1 and D2 relative to path u v and v  w can be multiplied
to get an encoding relative to path u w. Namely given:

Au ·D1 = s1 ·Av + E1 (mod q)

Av ·D2 = s2 ·Aw + E2 (mod q)

we obtain by multiplying the matrix encodings D1 and D2:

Au ·D1 ·D2 = (s1 ·Av + E1) ·D2 (mod q)

= s1 · s2 ·Aw + s1 ·E2 + E1 ·D2 (mod q)

= s1 · s2 ·Aw + E′ (mod q)
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for some new error ve­or E′. Since s1, E1, E2 and D2 have small coe�cients, E′ still has
small coe�cients (compared to q), and therefore the produ­ D1 ·D2 is an encoding of
s1 · s2 for the path u w.

Zero-testing. The procedure ZeroTest(pp,D), for an encoding D relative to the path
u v, returns true if and only if ‖Au ·D‖ < q/2t+1. The justification of that procedure
is that Au ·D = s ·Av + E is small for s = 0, but not otherwise (because the matrix Av

itself is not small).

Extra­ion. The corre­ness of zero-testing shows that the t most significant bits of D
depend only on the underlying plaintext s. Therefore, we can carry out the extra­ion
procedure by applying a randomness extra­or to those t bits.





Chapter 3

Overview of Known Attacks

3.1 Zeroizing attacks: breaking Di�e–Hellman key exchange
over GGH13 and CLT13

3.1.1 Notation and attack goals

The GGH13 and CLT13 schemes share a very similar stru­ure; here we summarize the
common features that are used in the attacks:

• Each encoding is “associated” with the ve­or of small integers in the numerator. For
GGH13 this is a 1-ve­or consisting of a single algebraic integer,and for CLT13 this is
a ve­or of n integers in Z. Below we write informally u ∼ (a1, . . . , an) to denote the
fa­ that the encoding u is associated with the ve­or of ai’s. Roughly speaking, the
goal of the attacks is to recover the ve­or (aj)j from the encoding u. Recovering this
ve­or (even if not in full) is usually considered a break of the scheme.

• An encoding of zero is associated with a ve­or divisible by the gj ’s, namely u ∼ (gjrj)j
for some rj ’s.

• Addition and multiplication of encodings a­s entry-wise on the ve­or of integers in
the numerator. Importantly, the addition and multiplication of these ve­ors is done
over the integers, with no modular redu­ion. This is because a wrap-around in these
operations is an error condition, and so the parameters are always set to ensure that
it does not happen.

• If u ∼ (gjrj)j is an encoding of zero at the top level, then applying the zero-test to u
yields the integer w =

∑
j rjρj , where the rj ’s are the multipliers from the numerator

ve­or and the ρj ’s are system parameters independent of u.

In other words, applying the zero-test to an encoding of zero yields the inner-produ­ of
the associated ve­or (without the gj ’s) with a fixed secret ve­or. (In GGH13 this is the
1-ve­or (h), in CLT13 the ve­or is (p∗jhj)j , where we denote p

∗
j = x0/pj =

∏
i 6=j pi).

Importantly, here too the inner produ­ is over the integers, with no modular redu­ion.

31
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3.1.2 Weak-DL attack on GGH13 and the Hu–Jia attack

The first published attack against the GGH13 scheme appears in the original paper itself
[GGH13a]. It considers the following setting. Suppose one gets a level-t encoding of zero
u0 ∼ (gr) and many other level-(κ − t) encodings um ∼ (am). Multiplying u0 by any of
the um’s yields a top-level encoding of zero u0um ∼ (gram), and applying the zero-test
yields the algebraic integer wm = hram. Note that this almost recovers the numerators
am’s; indeed we have them up to the common fa­or h′ = hr.

If we also knew the ideal Ig = gR that defines the plaintext space, then being able to
recover the numerator up to a constant is enough to break many hardness assumptions.
For example, given an encoded matrix we could compute its determinant (modulo Ig) up
to a constant, which would tell us whether or not the encoded matrix has full rank.

Typically, however, the ideal Ig is not explicitly given. Even in that case, however, Garg
et al. described how it can be recovered in certain cases using GCD computations. Roughly,
we can use GCD to identify and remove the common fa­or h′, thereby getting the am’s
themselves, except that these are all algebraic integers so we only have GCD in terms of
their ideals. Recovering the ideal Ia = aR is not always useful, e.g., if Ia and Ig are co-prime
then knowing Ia does not tell us anything about our plaintext coset a + Ig. However if
some of the ui’s are themselves encodings of zero, namely ai = gri, then given enough
ideals Iai = griR we could again use GCD calculations to recover the ideal Ig itself, and
then use that knowledge to attack the non-zero encodings among the ui’s. This attack was
called a “weak discrete-log attack” in [GGH13a]. It is easily seen to break the multilinear
analogue of assumptions like subgroup membership: see [GGH13a, §4.2].

3.1.3 The zeroizing attack of Cheon et al.

In [CHL+15], Cheon, Han, Lee, Ryu and Stehlé describe a major extension of the GGH13
zeroizing attack, which can be used to completely break multiparty Di�e–Hellman key
agreement over CLT13, and more generally any CLT13-based scheme in which a similar
family of low-level encodings of zero are available. The attack recovers the fa­orization of
x0, and then all secret information.

To mount the zeroizing attack of Cheon et al. [CHL+15], one needs three sets of
encoded inputs, which we denote by A = {Ai : i = 1, . . . , n}, B = {B0, B1}, and
C = {Cj : j = 1, . . . , n} (with n the dimension of the numerator ve­ors). The A’s are
all random encoding of zeros, the B’s are the target of the attack, and the C’s are just
helper encodings of random ve­ors. The levels of these encodings are such that multiplying
Ai ·Bσ ·Cj yields a top-level encoding of zero for any i, σ, j. Below we denote the numerator
ve­ors associated with these encodings by

Ai ∼ (g1ri,1, . . . , gnri,n), Bσ ∼ (bσ,1, . . . , bσ,n), and Cj ∼ (cj,1, . . . , cj,n).

Multiplying Ai · Bσ · Cj yields a top-level encoding of zero, associated with the ve­or
Ai ·Bσ · Cj ∼ (g1ri,1bσ,1cj,1, . . . , gnri,nbσ,ncj,n). Applying the zero-test we get a four-wise
inner produ­, yielding the integer wσ[i, j] =

∑n
k=1 ρkri,kbσ,kcj,k. We can write this four-wise
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inner produ­ in matrix form as

wσ[i, j] = (ri,1 . . . ri,n)×

 ρ1bσ,1
. . .

ρnbσ,n

×
 cj,1

...
cj,n

 ,
and denote the ve­or on the left by ai, the matrix in the middle by B′σ, and the ve­or on
the right by cj . For a fixed σ, let i, j range over 1, . . . , n. This yields an n× n matrix of
integersWσ = [wσ[i, j]]i,j = A′×B′σ×C ′, where A′ has the ai’s for rows and C ′ has the cj ’s
for columns. Since the ri,k’s, bσ,k’s, cj,k’s and ρk’s are all random (small) quantities, then
with high probability the matrices are all invertible (over the rationals). Having computed
the matrices Wσ, the attacker now sets

W = W0 ×W−11 = (A′B′0C
′)× (A′B′1, C

′)−1 = A′ × (B′0 ×B′1
−1

)×A′−1.

Observe now that B∗ = B′0 × B′1
−1 is a diagonal matrix with b0,j/b1,j on the diagonal,

and thus the eigenvalues of B∗ are all the ratios b0,j/b1,j . And since W and B∗ are similar
matrices, then also the eigenvalues of W are the b0,j/b1,j ’s. Hence once it computes W ,
the attacker can find its eigenvalues (over the rationals) and obtain all the ratios b0,j/b1,j .

These ratios may be enough by themselves to break some hardness assumptions, but for
CLT13 it is possible to use them to fa­or x0, thereby getting a complete break. Specifically,
since each ratio is rational it can be written as u/v = b0,j/b1,j with u, v co-prime integers.
Recalling now that B0, B1 are two encodings at the same level (say, level t) with numerator
ve­ors (b0,1, . . . , b0,n) and (b1,1, . . . , b1,n), respe­ively, we get that

uB1 − vB0 = [CRT (ub1,1 − vb0,1, . . . , ub1,n − vb0,n) /zt]x0 .

This means that the j-th CRT component is ub1,j − vb0,j = 0, and with high probability
the others are not, so we get gcd(x0, uB1 − vB0) = pj .

3.1.4 The attack of Hu and Jia

The attack of Cheon et al. [CHL+15] relies crucially on the fa­ that CLT13 is defined over
the integers, and on the fa­ that finding the fa­orization of x0 su�ces to break the scheme.
These aspe­s have no counterpart in GGH13 setting, and therefore the attack does not
apply (although it does apply to a matrix variant of GGH13: see [CGH+15]).

However, it turns out that the GGH13 version of multiparty Di�e–Hellman key exchange
is also insecure. This was shown by Hu and Jia [HJ16], using another attack that expands
upon the weak-DL attack above. One can sum up the attack as follows.

An eavesdropper in Di�e–Hellman key exchange sees encodings ui = eiy+ρi0x0+ρi1x1,
0 ≤ i ≤ κ, where x0, x0, y are level-1 encodings of 0, 0, 1 respe­ively, and the ei and ρij
are small. The secret derived by the parties is obtained from the most significant bits of
pzt ·

∏
ui, or equivalently h/g ·

∏
ei.

The first step of Hu and Jia’s attack is the weak-DL computation. Applying zero-testing
to ui · x0 · yκ−2, one gets:

vi = pzt · ui · x0 · yκ−2 mod q = eib0h+ ξig
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for some small ξi (without modular redu­ion). Similarly, applying zero-testing to x0 · yκ−1,
one obtains:

ṽ = pzt · x0 · yκ−1 mod q = b0h+ ξ̃g

again without modular redu­ion. As a result, ṽ−1 · vi ≡ ei (mod Ig), where Ig is the
principal ideal generated by g, as above. If we denote bywi a representative of ṽ−1·vi mod Ig,
then the produ­:

η :=

κ∏
i=0

wi ≡
κ∏
i=0

ei (mod Ig).

Thus, there exists some ζ0 ∈ R such that η =
∏
ei + ζg. This element ζ, however, is not a

priori small, so we cannot dire­ly solve the problem by taking the most significant bits of
η. Instead, Hu and Jia introduce some auxiliary zero-test values as follows:

Xi = pzt · x1xiyκ−2 mod q = h(1 + ag)κ−2b1big

Y = pzt · x1yκ−1 mod q = h(1 + ag)κ−1b1g.

Then Y · η is congruent to Y ·
∏
ei modulo b1g, and since X1 is a multiple of b1g, η′ =

Y · η mod X0 is also congruent to Y ·
∏
ei modulo b1g. Thus:

y/x1 · η′ mod q = pzt · yκ ·
∏

ei + ζ ′ · (1 + ag) mod q

for some small ζ ′. Thus, we have computed h/g ·
∏
ei + small error mod q, which breaks

the Di�e–Hellman key exchange as required.

3.1.5 Other zeroizing attacks

Following the attack of Cheon et al. [CHL+15], several papers attempted to modify the
CLT13 constru­ion in order to prote­ against the attack. However, the modified variants
turned out to be vulnerable to extensions of the same attack.

This includes in particular the “immunization technique” suggested by Boneh, Wu
and Zimmerman [BWZ14] and the countermeasure proposed by Garg, Gentry, Halevi
and Zhandry in [GGHZ14, §7], both of which can be broken by essentially extending the
dimension of the matrices involved in Cheon et al.’s attack by a small fa­or, as described
in [CLT14, CGH+15]. This also includes the CLT15 graded encoded scheme, proposed by
Coron, Lepoint and Tibouchi in [CLT15], which was broken soon after it was published by
Cheon, Fouque, Lee, Minaud and Ryu [CFL+16], again using a simple extension of Cheon
et al.’s attack.

3.2 Graph-induced cryptanalysis: breaking GGH15 key
exchange

Di�e–Hellman key exchange is also insecure over GGH15 multilinear maps. The protocol
was broken by Coron, Lee, Lepoint and Tibouchi [CLLT16a], both in the basic case and
when additional security defenses are implemented. Their attack also breaks the graph-
induced variant of GGH13. We give a description of the basic attack below.
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3.2.1 GGH15-based multiparty Di�e–Hellman

We first recall the stru­ure of the multiparty Di�e–Hellman key exchange protocol over
GGH15 [GGH15]. We consider the protocol with k users. As illustrated in Figure 3.1 for
k = 3 users, each user i for 1 ≤ i ≤ k has a dire­ed path of ve­ors Ai,1, . . . ,Ai,k+1, all
sharing the same end-point A0 = Ai,k+1. The i-th user will use the resulting chain to
extra­ the session key. Each user i has a secret exponent si. Each secret exponent si will
be encoded in each of the k chains; the encoding of si on the j-th chain for j 6= i will be
published, while the encoding of si on the i-th chain will be kept private by user i. Therefore
on the i-th chain only user i will be able to compute the session key. The exponents si
are encoded in a “round robin” fashion; namely the i-th secret si is encoded on the chain
of user j at edge ` = i + j − 1, with index arithmetic modulo k. Only the ve­ors Ai,1

for 1 ≤ i ≤ k are made public to enable extra­ion of the session-key; the others are kept
private.

A0

A1,3A1,2A1,1

A2,3A2,2A2,1

A3,3A3,2A3,1

s1, (D1,1) s2,D1,2

s3 ,D
1,3

s3,D2,1 s1,D2,2 s2, (D2,3)

s2,D3,1 s3, (D3,2)

s1,
D3,3

Figure 3.1: Graph of a key agreement between 3 parties for GGH15. The vertices contain
random ve­ors Aij , and encodings are represented on the edges. Each party is represented
by a di�erent color, keeps the encoding in parenthesis secret and publishes the two other
encodings.

3.2.2 The attack of Coron et al.

In [CLLT16a], Coron et al. show how an eavesdropper can recover the secret key derived
by the parties in the previous protocol in polynomial time. The attack proceeds in two
steps:

1. As a first step, the attacker will express one secret exponent s1 as a linear combi-
nation of the other secret exponents t1,`, using a variant of the attack of Cheon et
al. [CHL+15]. However this does not immediately break the protocol, because the
coe�cients of the linear combination are not small.

2. In the second step, which can be seen as a generalization of the techniques of Hu
and Jia [HJ16], the attacker will compute an equivalent of the private encoding of
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User 1 from the previous linear combination, by corre­ing the error due to the large
coe�cients. This breaks the key-exchange protocol.

We now describe the first step in the particular case of 3 users, which illustrates the main
ideas of the attack while avoiding some technical complications. We refer to [CLLT16a] for
the whole details. In the 3-user case, we have the following relations:

A1,1 ·D1,1 = s1 ·A1,2 + F1,1 (mod q) A1,1 ·C1,1,` = t1,` ·A1,2 + E1,1,` (mod q)
A1,2 ·D1,2 = s2 ·A1,3 + F1,2 (mod q) A1,2 ·C1,2,` = t2,` ·A1,3 + E1,2,` (mod q)
A1,3 ·D1,3 = s3 ·A0 + F1,3 (mod q) A1,3 ·C1,3,` = t3,` ·A0 + E1,3,` (mod q)

A2,1 ·D2,1 = s3 ·A2,2 + F2,1 (mod q) A2,1 ·C2,1,` = t3,` ·A2,2 + E2,1,` (mod q)
A2,2 ·D2,2 = s1 ·A2,3 + F2,2 (mod q) A2,2 ·C2,2,` = t1,` ·A2,3 + E2,2,` (mod q)
A2,3 ·D2,3 = s2 ·A0 + F2,3 (mod q) A2,3 ·C2,3,` = t2,` ·A0 + E2,3,` (mod q)

A3,1 ·D3,1 = s2 ·A3,2 + F3,1 (mod q) A3,1 ·C3,1,` = t2,` ·A3,2 + E3,1,` (mod q)
A3,2 ·D3,2 = s3 ·A3,3 + F3,2 (mod q) A3,2 ·C3,2,` = t3,` ·A3,3 + E3,2,` (mod q)
A3,3 ·D3,3 = s1 ·A0 + F3,3 (mod q) A3,3 ·C3,3,` = t1,` ·A0 + E3,3,` (mod q)

where all encodings Ci,j,` and Di,j are public, except D1,1 which is private on Row 1, D2,3

is private on Row 2, and D3,2 is private on Row 3. The corresponding graph is illustrated
in Figure 3.1. Note that on each row we have used the same index ` for t1,`, t2,` and t3,`,
but on a given row one can obviously compute produ­ of encodings for di�erent indices.

In the first step of the attack, we show that we can express s1 as a linear combinations
of the t1,`’s. For this we consider the rows 2 and 3, for which the encodings D2,2 and D3,3

corresponding to s1 are public. In the remaining of the attack, we always consider a fixed
index ` = 1 for the encodings corresponding to t3,`, and for simplicity we write t3 := t3,1,
C1,3 := C1,3,1, C2,1 := C2,1,1 and C3,2 := C3,2,1.

Since we always work with the same t3, on Row 2 we define the produ­ encodings
Ĉ2,2,` := C2,1 ·C2,2,`, and on Row 3 we define the produ­ encodings Ĉ3,2,` := C3,1,` ·C3,2;
recall that we use a fixed index for t3. Therefore we can write:

A2,1 · Ĉ2,2,` = t1,` · t3 ·A2,3 + Ê2,2,` (mod q) (3.1)

A2,3 ·C2,3,` = t2,` ·A0 + E2,3,` (mod q)

A3,1 · Ĉ3,2,` = t2,` · t3 ·A3,3 + Ê3,2,` (mod q)

A3,3 ·C3,3,` = t1,` ·A0 + E3,3,` (mod q)

for some small error ve­ors Ê2,2,` and Ê3,2,`.
For simplicity of notations, we first consider a fixed index i for the encodings corre-

sponding to t1,i, and we write t1 := t1,i, Ĉ2,2 := Ĉ2,2,i and C3,3 := C3,3,i. Similarly we
consider a fixed index j for the encodings corresponding to t2,j and we write t2 := t2,j ,
C2,3 := C2,3,j and Ĉ3,2 := Ĉ3,2,j . We use similar notations for the corresponding error
ve­ors.

All previous equations hold modulo q only. To get a result over R instead of only
modulo q, we compute the di�erence between two rows, for the same produ­ of secret
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exponents. More precisely, we compute:

ω = A2,1 · Ĉ2,2 ·C2,3 −A3,1 · Ĉ3,2 ·C3,3 (3.2)

= t1 · t3 · t2 ·A0 + t1 · t3 ·E2,3 + Ê2,2 ·C2,3

− t2 · t3 · t1 ·A0 − t2 · t3 ·E3,3 − Ê3,2 ·C3,3

= t1 · t3 ·E2,3 + Ê2,2 ·C2,3 − t2 · t3 ·E3,3 − Ê3,2 ·C3,3 . (3.3)

Namely the latter equation holds over R (and not only modulo q) because all the terms
in (3.3) have small coe�cients; namely the only term t1 · t2 · t3 ·A0 with large coe�cients
modulo q is canceled when doing the subtra­ion.

We have that ω is a ve­or of dimensionm. Now an important step is to restri­ ourselves
to the first component of ω. Namely in order to apply the same technique as in Cheon et
al.’s attack, we would like to express ω as the produ­ of two ve­ors, where the left ve­or
corresponds to User 1 and the right ve­or corresponds to User 2. However due to the
“round-robin” fashion of exponent encodings, for this we would need to swap the produ­
Ê3,2 ·C3,3 appearing in (3.3), since Ê3,2 corresponds to User 2 while C3,3 corresponds to
User 1; this cannot be done if we consider the full ve­or ω. By restri­ing ourselves to the
first component of ω, the produ­ Ê3,2 ·C3,3 becomes a simple scalar produ­ that can be
swapped; namely the scalar produ­ of Ê3,2 by the first column ve­or C′3,3 of the matrix
C3,3. We obtain the scalar:

ω = t1 · t3 · E2,3 + Ê2,2 ·C′2,3 − t2 · t3 · E3,3 −C′3,3 · Ê3,2

where C′2,3 and C′3,3 are the first column ve­ors of C2,3 and C3,3 respe­ively, both of
dimension m; similarly E2,3 and E3,3 are the first components of E2,3 and E3,3 respe­ively.

We can now write ω as the scalar produ­ of 2 ve­ors, the left one corresponding only
to User 1, and the right one corresponding only to User 2:

ω =
[
t1 Ê2,2 E3,3 C′3,3

]
·


t3 · E2,3

C′2,3
−t2 · t3
−Ê3,2

 .
Note that the two ve­ors in the produ­ have dimension 2m+ 2.

As in the attack of Cheon et al. [CHL+15], we can now extend ω to a matrix by
considering many left row ve­ors and many right column ve­ors. However instead of a
square matrix as in Cheon et al.’s attack, we consider a re­angular matrix with 2m+ 3
rows and 2m+ 2 columns. In (3.2), this is done by considering 2m+ 3 public encodings
Ĉ2,2,i and C3,3,i corresponding to User 1, and similarly 2m+ 2 encodings C2,3,j and Ĉ3,2,j

corresponding to User 2, for 1 ≤ i ≤ 2m + 3 and 1 ≤ j ≤ 2m + 2. More precisely we
compute as previously over R the following matrix elements, restri­ing ourselves to the
first component:

(W)ij = A2,1 · Ĉ2,2,i ·C′2,3,j −A3,1 · Ĉ3,2,j ·C′3,3,i (3.4)
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and as previously we can write:

(W)ij =
[
t1,i Ê2,2,i E3,3,i C′3,3,i

]
·


t3 · E2,3,j

C′2,3,j
−t2,j · t3
−Ê3,2,j

 .
We obtain a (2m+ 3)× (2m+ 2) matrix W with:

W =


. . .

t1,i Ê2,2,i E3,3,i C′3,3,i

. . .


︸ ︷︷ ︸

A

·


t3 · E2,3,j

...
C′2,3,j ...−t2,j · t3
−Ê3,2,j


︸ ︷︷ ︸

B

where the matrix A has 2m+ 3 rows ve­ors, each of dimension 2m+ 2, and the matrix B
has 2m+ 2 column ve­ors, each of dimension 2m+ 2; hence B is a square matrix.

By doing linear algebra, we can find a ve­or u over R of dimension 2m+ 3 such that
u ·W = 0, which gives:

(u ·A) ·B = 0 .

Heuristically with good probability the matrix B is invertible, which implies:

u ·A = 0 .

Since the first column of the matrix A is the column ve­or given by the t1,i’s, such ve­or
u gives a linear relation among the secret exponents t1,i.

Moreover, since the encodings D2,2 and D3,3 corresponding to s1 are public, we can
express s1 as a linear combination of the t1,i’s, over R. Namely we can define as previously
the produ­ encoding D̂2,2 := C2,1 ·D2,2, with:

A2,1 · D̂2,2 = s1 · t3 ·A2,3 + F̂2,2 (mod q)

for some small error ve­or F̂2,2, and we can now compute the same (W)ij as in (3.4) but
with D̂2,2 and D′3,3 instead of Ĉ2,2,i and C′3,3,i, where D′3,3 is the first column of D3,3. More
precisely, we compute for all 1 ≤ j ≤ 2m+ 2:

ωj = A2,1 · D̂2,2 ·C′2,3,j −A3,1 · Ĉ3,2,j ·D′3,3

which gives as previously:

ωj =
[
s1 F̂2,2 F3,3 D′3,3

]
·


t3 · E2,3,j

C′2,3,j
−t2,j · t3
−Ê3,2,j

 .
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This implies that we can replace any row ve­or [t1,i Ê2,2,i E3,3,i C′3,3,i] in the matrix A by
the row ve­or:

[s1 F̂2,2 F3,3 D′3,3] (3.5)

where D′3,3 is the first column of D3,3, and F3,3 is the first component of F3,3. Using the
previous technique, we can therefore obtain a linear relation between s1 and the t1,i’s over
R. More precisely, with overwhelming probability, such a relation can be put in the form:

µ · s1 =

2m+2∑
i=1

λi · t1,i (3.6)

with µ ∈ Z and λ1, . . . , λ2m+2 ∈ R. Indeed, we obtain such a relation by computing the
kernel of the matrix analogous to W above in echelon form over the fra­ion field of R,
which gives the kernel of the corresponding matrix A (assuming that B is invertible). Unless
a minor of that matrix vanishes, which happens with only negligible probability, this gives
a relation where the coe�cient of s1 is 1 and the other coe�cients are in the fra­ion field
R⊗Z Q of R. By clearing denominators, we get an expression of the form (3.6).

Then, by considering exa­ly one additional t1,i (say t1,2m+3) and carrying out the same
computations with indices i = 2, . . . , 2m+ 3 instead of i = 1, . . . , 2m+ 2, we get a second
relation:

ν · s1 =

2m+3∑
i=2

λ′i · t1,i .

If the integers µ and ν are relatively prime, which happens with significant probability, we
can apply Bézout’s identity to obtain a linear relation in R where the coe�cient of s1 is 1:

s1 =
2m+3∑
i=1

αi · t1,i, (3.7)

which completes this first attack step and our description.

3.3 Attacks on obfuscation

We conclude this chapter by a short discussion of proposed attacks against constru­ions of
indistinguishability obfuscation. Since a precise description of the constru­ions themselves
exceeds the scope of this document, we simply give a very rough idea of what the attacks
can achieve and of their limitations, without any attempt to provide technical details, for
which we refer to the corresponding papers.

3.3.1 Attacks against obfuscation over CLT13

Candidate constru­ions of indistinguishability obfuscation from multilinear maps (aside
from more recent techniques via fun­ional encryption) can be broadly divided into two
types: one the one hand, obfuscation for branching programs, that rely on Barrington’s
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theorem to obfuscate circuits, and on the other hand, circuit-obfuscation constru­ions, that
work dire­ly on circuits. Limited attacks exist on both types of schemes when instantiated
over CLT13.

Attacks on branching program obfuscation. Recall that a branching program is a
colle­ion of pairs Ai,0,Ai,1, 1 ≤ i ≤ t, of d× d square matrices together with some input
assignment fun­ion inp : {1, . . . , t} → {1, . . . , n}. It computes the Boolean fun­ion on n
inputs bits given by:

f(x1, . . . , xn) =

{
1 if

∏t
i=1 Ai,xinp(i) = Id

0 otherwise
.

Roughly speaking, branching program obfuscation candidates such as the one described by
Garg et al. in [GGH+13b] work by taking such a branching program, randomizing it using
Kilian’s technique, increasing the dimension of the matrices with some diagonal padding,
and then encoding the expanded randomized matrices element-wise using a multilinear
map.

In [CGH+15], Coron et al. showed that such a constru­ion provides the necessary data
to apply the attack of Cheon et al. [CHL+15] in the particular case when the branching
program has a decomposable stru­ure, i.e. when the successive matrices can be divided into
three groups, each depending on a di�erent subset of input bits. This attack does not apply
to a­ual obfuscation candidates, however, because the branching programs produced by
Barrigton’s theorem never have the required decomposable stru­ure.

However, Coron, Lee, Lepoint and Tibouchi [CLLT16b, CLLT17] later showed how
to dramatically expand the scope of this attack, and make it pra­ically relevant to an
a­ual obfuscation candidates when applied to a large class of fun­ions. The key idea of
their attack is the observation that the order of matrices in a branching program can be
rearranged in an essentially arbitrary way by taking tensor produ­s, at the cost of increasing
the dimension. This can be used to force branching programs into a decomposition suitable
to apply the previous attack, at least if the blow-up in matrix dimension is not too large.

As a result, they were able to break the original candidate obfuscator from [GGH+13b]
when instantiated over CLT13 multilinear maps, as well as the so-called single-input versions
of many subsequent candidate obfuscators, including [MSW14, AGIS14, PST14, BGK+14,
BMSZ16], again over CLT13. A surprising feature of the attack of [CLLT16b, CLLT17] is
that, assuming the existence of certain classes of pseudorandom fun­ions computed by
branching programs of short length, it can also break the obfuscator described in [GMM+16],
which is proved secure in the weak multilinear map model, a model that was believed to
capture all known classes of attacks on multilinear map constru­ions.

The attack of [CLLT16b, CLLT17] can only target fun­ions satisfying a property called
input-partionability, however. And soon after the attack was made public, Fernando,
Rasmussen and Sahai proposed a generic countermeasure to prote­ against all attacks of
that nature [FRS16]. It works by adding to the input of all fun­ions a “signature stru­ure”
that prevents input-partionability.
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Attacks on circuit-obfuscation. Coron et al. [CGH+15] also showed that the attack
of Cheon et al. can be extended to partially break the circuit-obfuscation schemes of
Zimmerman [Zim15] and Applebaum–Brakerski [AB15]. More precisely, the two papers
present a “simple” scheme (which is essentially the same in both papers) and more advanced
variants (which di�er between the two papers). Coron et al. target the simple scheme, and
show that an attack similar to Cheon at al.’s can be applied to that scheme when obfuscating
simple enough circuits, such as point fun­ions.

Note that this simple scheme uses so-called “composite-order” multilinear maps, which
cannot be instantiated over GGH13, so a CLT13-based instantiation is the only possible
concrete instantiation of that scheme known so far, and it is partially broken. However, the
more advanced versions are not shown to be vulnerable.

3.3.2 Attacks against obfuscation over GGH13 and GGH15

Setting aside obfuscation candidates relying on composite order multilinear maps (which
cannot be instantiated over GGH13), the first attack against indistinguishability obfus-
cators over GGH13 was the annihilation attack introduced by Miles, Sahai and Zhandry
in [MSZ16a]. It is conceptually di�erent from zeroizing attacks.

The attack targets a family of obfuscator that Miles et al. describe axiomatically, and that
captures in particular the constru­ions from [MSW14, AGIS14, PST14, BGK+14, BMSZ16].
One way of describing the general idea of the attack is to note that the zero-testing values
ωi arising from the evaluation a given branching program are ring elements that can be
expressed as polynomials

∑
j fij(r1, . . . , r`)g

j on the error fa­ors rk involved in encodings.
And for a di�erent but fun­ionally equivalent branching program, one will find polynomials
f ′ij 6= fij in general. One can then for instance distinguish between two di�erent but
fun­ionally equivalent branching programs by finding a polynomial relation Q between the
fi,0’s (i.e. Q(f1,0, . . . , fm,0) = 0). Indeed, such a relation will ensure that Q(ω1, . . . , ωm) is
always in the ideal Ig for the first branching program, whereas this will typically happen
with only negligible probability for the second branching program, for which the polynomial
relation does not hold.

The attack of [MSZ16a] even applies to the dual-input versions of the schemes mentioned
above over GGH13. However, several subsequent multilinear map constru­ions have been
proved to be secure against this class of attack [GMS16, MSZ16b].

More recently, several extensions of the attack of [MSZ16a] have been proposed. Chen,
Gentry and Halevi [CGH16] show how to break the original obfuscation candidate of
Garg et al. [GGH+13b] over GGH13 using annihilation attacks. They also combine the
annihilation technique with the attack of [CLLT16a] to break the constru­ion of obfuscation
over GGH15 multilinear maps [GGH15]. Like [CLLT17], however, these attacks are limited
to input partitionable fun­ions, and can thus be thwarted using the techniques of [FRS16].
One can also mention the work of Apon et al. [ADGM16], which introduces an e�ciently
testable condition for breaking obfuscation over GGH13 using annihilation attacks, and
uses it to attack a larger class of branching programs than [MSZ16a]. The constru­ions
that are provably secure against annihilation attacks [GMS16, MSZ16b] remain una�e­ed,
however.





Chapter 4

Conclusions and Perspe­ives

4.1 Status of multilinear map-based primitives

We present a snapshot of the current security status of major primitives based on multilinear
maps at the time of this writing. The situation is likely to evolve rapidly, however. For an
up-to-date overview of current results, we refer the reader to Martin Albrecht’s excellent
resource entitled “Are Graded Encoding Schemes Broken Yet?” [Alb16].

Multiparty Di�e–Hellman key exchange. Over all proposed multilinear map candi-
dates, multiparty Di�e–Hellman key exchange is broken. Over CLT13 multilinear maps,
it was broken by Cheon et al. [CHL+15], and later attempts to prote­ against the at-
tack [BWZ14, GGHZ14, CLT15] were also broken by extensions of that attack [CLT14,
CGH+15, CFL+16]. Over GGH13 multilinear maps, it was broken by Hu and Jia [HJ16],
and that attack also applies to the optimized versions proposed in [LSS14, ACLL15]. Finally,
over GGH15 multilinear maps, it was broken by Coron et al. [CLLT16a].

Indistinguishability obfuscation. Attacks have been demonstrated against some candi-
date constru­ions of indistinguishability obfuscation over each of GGH13, CLT13 and
GGH15, but not everything is broken. More precisely, the annihilation attack of Miles, Sahai
and Zhandry [MSZ16a] and its extensions [CGH16, ADGM16] broke almost all indistin-
guishability obfuscators over GGH13 existing at the time, but later on, constru­ions were
proposed that are provably secure against it [GMS16, MSZ16b]. The zeroizing attack of
Coron et al. [CLLT16b, CLLT17] broke almost all indistinguishability obfuscators over
CLT13 existing at the time in the single-input setting. However, dual-input constru­ions are
una�e­ed. Moreover, the attack only a�e­s input-partitionable fun­ionalities, and can thus
be thwarted using the generic countermeasure of Fernando, Rasmussen and Sahai [FRS16].
Finally, Chen, Gentry and Halevi [CGH16] obtained an attack indistinguishability obfus-
cation over GGH15 [GGH15]. However, this attack also applies to input-partitionable
fun­ionalities only, and is thus thwarted by [FRS16].

43
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Other primitives. No specific cryptanalytic work so far has examined the security of other
multilinear map-based primitives like witness encryption. However, a reasonable expe­ation
is that constru­ions relying on secret-key graded encodings, like witness encryption, are
likely to behave similarly to indistinguishability obfuscation, whereas constru­ions relying
on public-key encodings, like some constru­ions of ABE, are likely to fall prey to the same
kind of attacks as Di�e–Hellman key exchange.

Note also that indistinguishability obfuscation is su�cient to obtain provably secure
multilinear maps [AFH+16], so theoretically speaking, as long as indistinguishability obfus-
cation exists, everything, including multiparty Di�e–Hellman, can be instantiated securely.
Of course, the e�ciency of such a giant pyramid constru­ion is guaranteed to be atrocious.

4.2 Future prospe­s

As we have seen, the whole multilinear map edifice is standing on shaky ground, and its
security situation is quite precarious. Further progress on the cryptanalytic side is likely, and
could easily bring about the unravelling of the last few remaining candidate constru­ions
of indistinguishability obfuscation. And even if one believes that those schemes will stay
secure, it is fair to say that the current situation, in which we have to rely on multilinear map
constru­ions that were found to not even satisfy their original, basic security definition, is
unsatisfa­ory. Progress is also being made on the constru­ion side, however, and it could
ultimately yield to much more solid foundations. This could come from several dire­ions.

Indistinguishability obfuscation. The conditions needed to obtain indistinguishability
obfuscation are becoming less and less stringent. Although early candidate constru­ions
required multilinear maps with polynomially large degrees satisfying very strong security
assumptions, this has recently been reduced to conservative assumptions over n-linear maps
for n as low as 5 [Lin16, AS16]. If n could be reduced further, one might eventually be able
to dispense with multilinear maps altogether and obtain everything from pairings.

Fun­ional encryption. Compa­ fun­ional encryption for relatively limited classes of
fun­ions would also su�ce to obtain indistinguishability obfuscation and hence everything
else. And current techniques are not very far o� from achieving it from LWE [GKP+13,
GVW15].

New multilinear maps. Since low-degree multilinear maps are now known to su�ce for
indistinguishability obfuscation, and hence essentially all applications, geometry-based
techniques, which were originally ruled out by Boneh and Silverberg, might be usefully
revisited, as has been done on a few occasions [RH09].

In any event, the field of multilinear maps can certainly expe­ many interesting develop-
ments in the months and years to come.
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