
A SYMMETRIC KEY ENCRYPTION ALGORITHM MULTI-S01

Copyright  2000, 2001, 2002 Hitachi, Ltd. All Rights Reserved....
1111

A SYMMETRIC-KEY ENCRYPTION

ALGORITHM:
MULTI-S011
An Integrity-Aware Block Encryption Based on

Cryptographic Pseudorandom Number

Generator

Specification Ver 1.2 (Revised on May 14, 2002)

HITACHI, LTD.

1111 MULTI-S01 stands for “MULTImedia encryption algorithm-S01”.

A SYMMETRIC KEY ENCRYPTION ALGORITHM MULTI-S01

Copyright  2000, 2001, 2002 Hitachi, Ltd. All Rights Reserved....
2222

Abstract
We propose a block-wise encryption algorithm MULTI-S01 that uses the

PANAMA pseudorandom number generator (PRNG). Assuming the security of PANAMA ,
MULTI-S01 achieves high security of both data confidentiality and data integrity as
well as high performance on software implementation and hardware implementation.

In terms of security, there are two characteristics: assuming a secure PRNG, we
can guarantee information confidentiality and integrity. In addition, the attacker
(without knowledge of secret key) cannot generally determine any part of actual output
sequence of PRNG just by knowing known-plaintexts.

The MULTI-S01 algorithm also has two performance advantages over
encryption algorithms based on block ciphers. Firstly, since PANAMA operates faster
than a block cipher, the entire encryption can be done with less computational
complexity with efficient F264 multiplication than when a block cipher is used. In
proposed scheme, the encryption computationally costs constant overhead calculation
and computation in proportion to message length. The latter substantially costs 64-bit
random number generation and a multiplication in F264.

Secondly, pre-computation or parallel computation of a random sequence is
easy to apply with our algorithm, so additional hardware resources can satisfy the
demand to very high performance.

Employing PANAMA as a PRNG, software implementations of encryption and
decryption on Alpha processor perform at approximately 17.8 and 18.0 cycle/byte,
respectively. For algorithm and key initialization, approximately 34,000 clocks for
encryption and decryption, are required.

A SYMMETRIC KEY ENCRYPTION ALGORITHM MULTI-S01

Copyright  2000, 2001, 2002 Hitachi, Ltd. All Rights Reserved....
3333

Contents

1. PRELIMINARIES... 4

1.1. EXPRESSIONS OF VARIABLES AND SYMBOLS ... 4
1.2. BYTE ORDERING IN A WORD (ENDIANESS).. 4
1.3. OPERATION IN FINITE FIELD F264 .. 5

2. ALGORITHM SPECIFICATION ... 7

2.1. OVERALL STRUCTURE AND INTERFACE ... 7
2.2. FUNCTIONALITY .. 9
2.3. KEY STREAM GENERATION.. 9

2.3.1. Key Stream Generator ... 9
2.3.2. Description of PANAMA ... 10

2.4. GENERATING A, B, AND S USING PANAMA... 14
2.5. MIXING FUNCTION FOR ENCRYPTION .. 15
2.6. MIXING FUNCTION FOR DECRYPTION .. 16

3. OPERATIONS FOR LARGE MESSAGE .. 18

REFERENCES ... 18

A SYMMETRIC KEY ENCRYPTION ALGORITHM MULTI-S01

Copyright  2000, 2001, 2002 Hitachi, Ltd. All Rights Reserved....
4444

1. Preliminaries

1.1. Expressions of Variables and Symbols

In this document, we define following symbols for integer operation.

 ⊕ Bitwise exclusive-or (XOR) operation
 ⊗ Multiplication in finite field F264
 + Arithmetic addition
 × Arithmetic multiplication
 OR Bitwise logical OR operation
 NOT Bit complement
 ROTLk(X) Left circular rotation in 32-bit register

X (64) refers to a 64-bit-long variable, called X. As for the subscripts, the number in the
subscript means the index. We count the index from 1.

We define the field F264 as a quatient field F2[X] / (f (X)), where f(X) is the
following irreducible polynomial of degree 64:

f (X) = X 64+X 4+X 3+X+1.
The symbol x denotes the ceiling function, the smallest integer that is larger or equal
to x. For two binary strings A(64) and B (64), for instance, we use a notation A||B to
represent the concatenation of two bit strings A and B.

1.2. Byte Ordering in a Word (Endianess)

We define the rule of byte ordering in a 64-bit word as endianness. A key, plaintext,
ciphertext, redundancy data, and initial value are given and represented as byte array
data. If we convert a word to four bytes or convert four bytes to a word, we adopt
big-endian. For instance, if we try to store data in a byte array X into a 64-bit word array
Y, then the mathematical representation of Y is:

A SYMMETRIC KEY ENCRYPTION ALGORITHM MULTI-S01

Copyright  2000, 2001, 2002 Hitachi, Ltd. All Rights Reserved....
5555

Yi
(64) = Σj=1,…,8 X(8)

8(i –1)+j 2 (64–8 j).

For visual comprehension, a 64-bit register Y (64) contains 8 bytes of data X (8)
i in the

following order:
Y (64)=[MSB]X1 ||X2 || X3 || X4 || X5 || X6 || X7 || X8[LSB],

where [MSB] and [LSB] represent the positions of the most significant byte and the
least significant byte, respectively.

1.3. Operation in Finite Field F264

MULTI-S01 uses operations in finite field F264. In this section, we briefly
introduce some fundamentals necessary for implementation.

Addition in is very simple, because it is identical to XOR operation. In this section,
we substantially introduce multiplication in F264. In this document, when multiplication
in finite field F264 is concerned, e.g., A ⊗ B, we associate a 64-bit value A, to a
polynomial whose degree is less than 64, and whose coefficients ai are ai∈ {0,1}. Here
we show how to determine the associated polynomials, A(x) and B(x).

� A bit value ai={0,1} is defined as the ith most significant bit of A. Therefore, (a1,

a2, a3,...,a64)=A. Using ai's, the associated polynomial is described as follows.
A(x) = a1x 63 + a2x 62 + a3x 61 + ... + a63x + a64 = Σi =1...64 aix (64–i).

� Similarly, define bi ={0,1} and associate following B (x) to B.
(b 1, b 2, b 3,...,b 64)=B,
B(x) = b 1x 63 + b 2x 62 + b 3x 61 + ... + b 63 x + b 64 = Σi =1...64 bix (64–i) .

For the following calculation, we introduce two expressions. “A(x) mod P(x)” denotes
the modulo of A(x) divided by P(x). In this document, we set P(x)=x64+x4+x3+x +1 and
obtain the result of (modular) multiplication C(x).

C (x) = A (x) × B (x) mod P (x) .
All the coefficients are in modulo 2, i.e., 0+0=0, 0+1=1, 1+1=0, 0×0=0, 0×1=0, and

1×1=1. Note that these operations are associative (the same result holds for swapping
operands). Therefore, addition and multiplication correspond to XOR and AND
operations, respectively. As the degree of P(x) is 64, that of C(x) is at most 63, i.e., the
number of terms is at most 64. The 64-bit value corresponding to the obtained
polynomial C(x) is the result of multiplication.

A SYMMETRIC KEY ENCRYPTION ALGORITHM MULTI-S01

Copyright  2000, 2001, 2002 Hitachi, Ltd. All Rights Reserved....
6666

� Determine bit sequence ci ={0,1} to be the coefficient of x64–i, i.e., following
relation is established.
C (x) = c1x 63 + c2x 62 + c3x 61 + ... + c63x + c64 = Σi =1...64 cix (64–i) .

� Determine the value of C, from ci sequence as follows.
C=(c1, c2, c3,...,c64) .

Example
We demonstrate multiplication of A and B. Followings are hexadecimal expressions

of A, and B.
A = 01234567 89abcdef,
B = fedcba98 76543210.

These binary expressions are

A = 0000 0001 0010 0011 0100 0101 0110 0111
1000 1001 1010 1011 1100 1101 1110 1111,

B = 1111 1110 1101 1100 1011 1010 1001 1000
0111 0110 0101 0100 0011 0010 0001 0000.

The associated polynomials are

A(x) =x 56+x 53+x 49+x 48+x 46+x 42+x 40+x 38+x 37+x 34+x 33+x 32+x 31+x 27+x 24

+x 23+x 21+x 19+x 17+x 16+x 15+x 14+x 11+x 10+x 8+x 7+x 6+x 5+x3+x 2+x +1,
B(x) =x 63+x 62+x 61+x 60+x 59+x 58+x 57+x 55+x 54+x 52+x 51+x 50+x 47+x 45+x 44

+x 43+x 41+x 39+x 36+x 35+x 30+x 29+x 28+x 26+x 25+x 22+x 20+x 18+x 13+x 12+x 9+ x 4.

Let D(x) = A(x) × B(x). Then D(x) is
D(x)=A(x)x 63+A(x)x 62+A(x)x 61+A(x)x 60+A(x)x 59+A(x)x 58+ A(x)x 57+A(x)x 55

+A(x)x 54+A(x)x 52+A(x)x 51+A(x)x 50+A(x)x 47+A(x)x 45+A(x)x 44+A(x)x 43

+A(x)x 41+A(x)x 39+A(x)x 36+A(x)x 35+A(x)x 30+A(x)x 29+A(x)x 28+A(x)x 26

+A(x)x 25+A(x)x 22+A(x)x 20+A(x)x 18+A(x)x 13+A(x)x 12+A(x)x 9+A(x)x 4
= x 119+x 118+x 117+x 109+x 108+x 107+x 103+x 102+x 100+x 99

+x 94+x 93+x 91+x 87+x 83+x 78+x 76+x 71+x 69+x 68

+x 62+x 55+x 53+x 46+x 45+x 44+x 43+x 39+x 36+x 35

+x 29+x 27+x 23+x 22+x 19+x 12+x 7+x 6+x 5+x 4.

A SYMMETRIC KEY ENCRYPTION ALGORITHM MULTI-S01

Copyright  2000, 2001, 2002 Hitachi, Ltd. All Rights Reserved....
7777

Now we reduce the polynomial using P(x). For simplest reduction, since P (x)= x64+x4

+x 3+x +1, replace all terms with degrees more than 64 as following polynomials.

x 64=x 4+x 3+x +1,
x 65=x 5+x 4+x 2+x,
x 66=x 6+x 5+x 3+x 2,

...
x 124= x 64+x 63+x 61+x 60 = (x 4+x 3+x +1)+ x 63+x 61+x 60

= x 63+x 61+x 60+x 4+x 3+x +1,
x 125=x ×x 124=x 64+x 62+x 61+x 5+x 4+x 2+x = (x 4+x 3+x +1)+x 62+x 61+x 5+x 4+x 2+x

= x 62+x 61+x 5+x 3+x 2+1,
x 126=x ×x 125= x 63+x 62+x 6+ x 4+x 3+x.

Therefore we obtain the following polynomial as C(x).

C (x)=x 62+x 59+x 55+x 49+x 46+x 45+x 44+x 43+x 41+x 39+x 37+x 36+x 34+x 32+x 30+x 28

+x 27+x 26+x 24+x 23+x 20+x 18+x 17+x 16+x 14+x 13+x 11+x 10+x 9+x 8+x 7+x 5.

To obtain the result of multiplication, generate the bit sequence of coefficients.

 c= 0100 1000 1000 0010 0111 1010 1011 0101

 0101 1101 1001 0111 0110 1111 1010 0000 (binary expression)
 = 48827ab5 5d976fa0 (hexadecimal expression) .

2. Algorithm Specification

2.1. Overall Structure and Interface

The MULTI-S01 cipher comes out two processes: encryption and decryption. Each
process of encryption and decryption consists of a key stream generator and a mixing
function. The mixing function for decryption is the inverse function of the mixing
function for encryption.

A SYMMETRIC KEY ENCRYPTION ALGORITHM MULTI-S01

Copyright  2000, 2001, 2002 Hitachi, Ltd. All Rights Reserved....
8888

The key stream generator generates a key stream, A, B and S out of a secret key K and
Q. The length of the key stream B depends on how long message is encrypted.

The encryption algorithm takes four inputs: the m-bit message M, 64-bit
redundancy data R, secret key K, and initial vector Q. It outputs ciphertext C. These
inputs are represented as byte-array data, i.e., M (8)

i (i = 1,..., m / 8), R (8)
i (i = 1,…, 8),

K (8)
i (i = 1,…, 32), and Q (8)

i (i = 1,…, 32). The length of the ciphertext is (64×(m / 64
+2)) bits stored in a byte array.
In corresponding decryption function, all four inputs, the c-bit ciphertext C, 64-bit
redundancy data R, 256-bit secret key K, and 256-bit initial vector Q are given in
byte-array data, i.e., C (8)

i (i = 1,...,  c / 8), R (8)
i (i = 1,…, 8), K (8)

i (i = 1,…, 32), and Q

(8)
i (i = 1,…, 32). The decryption function outputs either the result of decryption M', or

an integrity error signal. If former is output, the result is stored in byte-array data. The
encryption and decryption consist of 64-bit block-wise computations. Let n = m / 64
+2 be the number of blocks. The key stream generator takes K and Q as inputs and
generates a key stream A(64), B (64×n bits), and S (64). The mixing function for
encryption takes M, R, A, B and S as inputs and generates C, while the mixing function
for decryption takes C, R, A, B and S as inputs and outputs either the “reject” signal or
the resultant data M’. Figure 1 is a block diagram of the overall structure on the
MULTI-S01 cipher.

Figure 1: Overall block diagram of the MULTI-S01 cipher.

Message M
Key K

Redundancy R

Initial Vector Q

Key Stream
Generator KS

Mixing
Function MX

Ciphertext C

Encryption

Ciphertext C

Decryption

Message M’/ Reject

Key K

Mixing
Function MX-1

Redundancy R

Initial Vector Q

Key Stream
Generator KS

Message M
Key K

Redundancy R

Initial Vector Q

Key Stream
Generator KS

Mixing
Function MX

Ciphertext C

Encryption

Ciphertext C

Decryption

Message M’/ Reject

Key K

Mixing
Function MX-1

Redundancy R

Initial Vector Q

Key Stream
Generator KS

A SYMMETRIC KEY ENCRYPTION ALGORITHM MULTI-S01

Copyright  2000, 2001, 2002 Hitachi, Ltd. All Rights Reserved....
9999

2.2. Functionality

If a securely generated and shared key is used, an adversary without the secret key
cannot know any information about a plaintext out of the ciphertext. In addition, if the
redundancy data is shared securely (but not necessarily secret), this encryption scheme
also provides security of detecting malicious alteration on a ciphertext. The security of
detecting alteration, in other words, guarantees that the probability of successful
malicious alteration is proven to be small enough.

2.3. Key Stream Generation

2.3.1. Key Stream Generator
The key stream generator prepares the necessary pseudorandom sequences A(64 bits),
B(64×n bits), and S(64 bits) out of the input K and Q. The number of blocks n is defined
as follows:
 (Encryption) n = m / 64 +2, where m is the number of bits in a message,
 (Decryption) n =  c / 64 , where c is the number of bits in a ciphertext.

For n block plaintext (namely the message data padded with random data and
redundancy and stored in a 64-bit word array), an encryption uses a 64-bit non-zero
pseudorandom number A, a (64×n)-bit pseudorandom sequence B, and 64-bit
pseudorandom number S. The followings show how to generate A, B and S. We describe
the key stream generator based on the PANAMA PRNG [2].

PANAMA PRNG

Algorithm
 INPUT: 256-bit seed K,
 256-bit initial vector Q.
 OUTPUT: a 64-bit non-zero pseudorandom number A,
 a (64× n)-bit pseudorandom sequence B,
 a 64-bit pseudorandom number S.
 (1) Initialize the PRNG with seed K , and initial vector Q.
 (2) Generate a 64-bit non-zero pseudorandom number A with the PRNG.

A SYMMETRIC KEY ENCRYPTION ALGORITHM MULTI-S01

Copyright  2000, 2001, 2002 Hitachi, Ltd. All Rights Reserved....
10101010

 (3) Generate a (64× n)-bit pseudorandom sequence B.
 (4) Generate a 64-bit pseudorandom sequence S.

As a default PRNG, we use the PANAMA PRNG.

2.3.2.Description of PANAMA
PANAMA was designed by J. Daemen and C. Clapp, and is a cryptographic module that
can be used both as a hash function and as a stream cipher. It consists of 32-bit primitive
operations. Now, we say “1 word” in the sense that it is 32-bit. In this paper, we use
PANAMA as a PRNG, that generates the key stream of MULTI-S01.

PANAMA is a cryptographic module consisting of
a: a 17-word main register (state),
b: a 256-word additional register (buffer),
ρ: a non-linear transformation of a,
λ: a linear transformation of b.

The state is denoted by a and consists of 17 words a0 to a16 . The buffer denoted by b is
a linear feedback shift register with 32 stages; each stage consists of 8 words. An
8-word stage is denoted by bj and its words by bj

i . Both stages and words are indexed
starting from 0. The index of ai is always reduced to mod 17. Similarly the indices (i, j)
of bj

i are reduced to mod 8 and mod 32, respectively.
PANAMA has three usage modes: Reset mode, Push mode, and Pull mode. When

PANAMA operates to generate a pseudorandom sequence, the schedule of operation
follows Table 1.

Table 1: The mode schedule of PANAMA key stream generator.

Time t (Round) Mode Input (256 bits) Output (256 bits)
-34 Reset  
-33 Push K 
-32 Push Q 

-31,. . . ,0 Pull  
1, 2, ..., i, ... Pull  Output Seq. Outi

Reset mode

In Reset mode, the state and buffer are set to 0.

A SYMMETRIC KEY ENCRYPTION ALGORITHM MULTI-S01

Copyright  2000, 2001, 2002 Hitachi, Ltd. All Rights Reserved....
11111111

Push mode

In Push mode, an 8-word input is applied and there is no output (see Figure 2).
Algorithm
 INPUT: 8-word block p.
 OUTPUT: no output.
 (1) x = b16.
 (2) Update the buffer b (b = λ(b) = λ(b, p). (λ will be explained later.)).
 (3) Update the state a (a = ρ(a) = ρ(a, p, x). (ρ will be explained later.)).

Note that ρ uses the old positions of buffer b.

Pull mode

In Pull mode, there is no input and an 8-word random sequence is delivered for each
round. We use Pull mode to confuse the buffer and the state again (see Figure 2.) and to
generate the key stream.

Algorithm
 INPUT: number of rounds n.
 OUTPUT: pseudorandom number K (8-word).
Iterate the following operation for k = 0 to n.
 (1) Output K = (a9, ... , a16).
 (2) x = b16, q = b4.
 (3) Update the buffer b (b = λ(b) = λ(b, p)).
 (4) Update the state a (a = ρ(a) = ρ(a, p, x)).

Note that the state-update function ρ uses old x value as an input as well as Push mode.

A SYMMETRIC KEY ENCRYPTION ALGORITHM MULTI-S01

Copyright  2000, 2001, 2002 Hitachi, Ltd. All Rights Reserved....
12121212

0
8-word

a

p

ρ

31

a

ρ

0 31

8-word

8-word
8-word

8-word
17-word

8-word

8-word

8-word

17-word

Figure 2: Push (above) and Pull (below) modes of PANAMA.

Updating of the buffer b

The buffer is a variation of Linear-feedback shift register with a word-oriented
structure. The buffer is updated as follows (see Figure 3).

Algorithm
We denote the updated buffer d (i.e., d = λ(b)). λ is described as follows.
 d j = b j–1 if j ≠ 0, 25,
 d 0 = b 31 ⊕ q,
 d 25

i = b24
i ⊕ b 31

i +2, for 0 ≤ i < 8.
In Push mode, q is the input block p. In Pull mode, it is part of the state a given by

 qi = ai+1 for 0 ≤ i < 8.

A SYMMETRIC KEY ENCRYPTION ALGORITHM MULTI-S01

Copyright  2000, 2001, 2002 Hitachi, Ltd. All Rights Reserved....
13131313

rot 2/word

q
0 25 26 31

0 7

8-word

1-word

Figure 3: The buffer updating transformation λ.

Non-linear transformation ρρρρ

The transformation of state a is composed of four transformations γ, π, θ, and σ (see
Figure 4).

ρ(a) = σ (θ (π (γ (a)))).
γ is a non-linear transformation defined by:

γ (ai) = ai ⊕ (ai+1 OR (NOT ai+2)), 0 ≤ i < 17.
π consists of a permutation of word positions and 32-bit left rotations. Let ROT k denote
a rotation over k positions from LSB to MSB. Then we have:

π(ai) = ROT i(i+1)/2 mod 32 (a7i), for 0 ≤ i < 17.
θ is a linear transformation defined by:

ci = ai ⊕ ai+1 ⊕ ai+4 for 0 ≤ i < 17.
The transformation σ corresponds to the bit-wise addition of buffer and input words. It
is given by:

σ(a0) = a0 ⊕ 1,
σ(ai+1) = ai+1 ⊕ li , 0 ≤ i < 8,
σ(ai+9) = ai+9 ⊕ b16

i , 0 ≤ i < 8.
In Push mode l is the input words p, and in Pull mode l is b4.

A SYMMETRIC KEY ENCRYPTION ALGORITHM MULTI-S01

Copyright  2000, 2001, 2002 Hitachi, Ltd. All Rights Reserved....
14141414

Figure 4: Non-linear transformation ρ.

2.4. Generating A, B, and S using PANAMA

In this section, we define the way to generate A, B, and S using PANAMA PRNG. Let n
be the number of blocks (64 bits) in B. Use of the initial value Q is mentioned
afterwards.

Sequence Generation

 Input: Secret key K (256 bits)
 Initial value Q (256 bits)
 Output: Key stream A (64 bits), B (64n bits), and S (64 bits)
 Step 1: Initialize PANAMA and input K and Q,
 Step 2: Let A be the first 64 bit output,
 Step 3: If A = 0, then do Step 2 again,
 Step 4: Let B be the following 64n bit output sequence,
 Step 5: Let S be the following 64 bit output.

Use and Remark of Initial Value Q

In MULTI-S01 cipher, the initial value of Panama is used for these purposes.

bit
dispersion

diffusion

buffer
injection

non-
linearity

1h

A SYMMETRIC KEY ENCRYPTION ALGORITHM MULTI-S01

Copyright  2000, 2001, 2002 Hitachi, Ltd. All Rights Reserved....
15151515

PARALLEL COMPUTATION: Generation of key stream is assigned to plural processors
according to the initial value.
RESYNCHRONIZATION: Update the initial value Q for Panama so that the decryptor can
recover synchronization.
OPERATIONS FOR VERY LONG MESSAGES: We mention about it at Chapter 3.

The initial value Q must not be secret nor randomly chosen. However it must be shared
between the encryption and the decryption. For other remark, whenever the encryption
begins, the encryption must use the flesh key stream that has never appeared before. In
other words, one may not use the same pair of (K,Q) for different combination of
message and redundancy.

2.5. Mixing Function for Encryption

The mixing function for encryption consists of two parts: data padding and data mixing.
Data padding generates the P (64×n)-bit intermediate value, out of M, S and R. Data
mixing generates C out of P, A, and B.

Data padding takes m-bit message, 64-bit redundancy data and secret padding data.
Former two data are given as a byte sequence M (8)

i, (i =1,..., m / 8), and redundancy
data R (8)

i (i =1,...,8). These are used to generate the intermediate value stored as a 64-bit
word array P (64)

i (i =1,..., n). The 64-bit word array P (64) is assigned as follows:

P (64)
i = Σj=1,…,8 M (8)

8(i–1)+ j 264–8 j (i = 1,..., n–2),

P (64)
n–1 = S,

P (64)
n = Σj=1,…,8 R (8)

 j 2 64–8 j.

Similarly, the initial feedback value F (64)
0 is set as follows:

F (64)
0 = 0 .

In data mixing, ciphertext C (64)
i (i =1,..., n) is generated out of Pi, A, and Bi with the

following equations:
F(64)

i = P (64)
i ⊕ B(64)

i ,
 C (64)

i = (F (64)
i ⊗ A(64)) ⊕ F (64)

i –1 (i = 1,..., n).

A SYMMETRIC KEY ENCRYPTION ALGORITHM MULTI-S01

Copyright  2000, 2001, 2002 Hitachi, Ltd. All Rights Reserved....
16161616

The ciphertext C(8) is the result of converting the 64-bit word array C(64) to the byte
array. The encryption is depicted in Figure 5.

Figure 5: Mixing function for encryption.

2.6. Mixing Function for Decryption

The mixing function for decryption consists of two parts: data unmixing and integrity
checking. Data unmixing generates an intermediate value P’ out of C’, A, and B.
Integrity checking outputs a “reject” signal or message M’ according to check of data
P’, S, and R (8)

i .
The unmixing part initially converts the byte data array C’ (8)

i to a 64-bit word
array C’(64)

i (i =1,..., n , where n is the size of the array C’ (64)), respectively, and
generates P’ (64)

i out of A(64), B(64)
i, and C’(64)

i with the following equations:

F’(64)
0 = 0,

F’ (64)
i = (C’ (64)

i ⊕ F’ (64)
i –1)⊗ (A (64))–1 (i = 1,..., n),

M 0...

P

P1

B1

C

A

R

P2

C’1 C’2

Pn

C’n

B2

A

Bn

A

S

Pn-1

C’n-1

Bn-1

A

A SYMMETRIC KEY ENCRYPTION ALGORITHM MULTI-S01

Copyright  2000, 2001, 2002 Hitachi, Ltd. All Rights Reserved....
17171717

P’ (64)
i = F’ (64)

i ⊕ B (64)
i (i = 1,..., n).

At the integrity checking part, P’ (64)

i (i =1,..., n) is divided as follows:
M ’(64)

i = P’ (64)
i (i =1,..., n–2),

S’ (64) = P’ (64)
n–1,

R’ (64) = P’ (64)
n.

R (64) denotes the result of converting R (8) to a 64-bit value. Only if both S (64)=S ’(64) and
R (64)=R’(64) hold, the integrity checking part outputs the byte array of the message, the
result of converting M’ (64)

i. Otherwise, this part outputs a “reject” signal. Figure 6
shows decryption.

Figure 6: Mixing function for decryption.

To generate A–1 , the multiplicative inverse of A, one can use the equation A–1 = Aq,
where q = 264–2 in Finite field F264. For more efficient algorithms, Euclid’s algorithm
and almost inverse algorithm [1] are also usable.

P’

P’1

C’

P’2

C’1 C’2

P’n

C’n

B1 B2 Bn

M’ R’

A-1

F1 F2 Fn-1 Fn

P’n-1

C’n-1

Bn-1
Fn-2

S’

A SYMMETRIC KEY ENCRYPTION ALGORITHM MULTI-S01

Copyright  2000, 2001, 2002 Hitachi, Ltd. All Rights Reserved....
18181818

3. Operations for Large Message

For messages larger than 232 blocks, one divides the long message into large blocks
of (238–128) bits in length and encrypts each large block individually. Note that for each
large block, one must use different initial value for PANAMA key stream generation so
that different key streams are generated for each large block.

Let M-S01(K ,Q ,R ,M) be the encryption function with K, Q, R, and M. If a long
message µ is encrypted, one divides into 238–128-bit blocks, µ1 , µ2 , µ3 ,..., µk . The
ciphertext C for K is

C = M-S01(K,0,0, µ1)|| M-S01(K,1,1, µ2)|| ...|| M-S01(K,k,k, µ k)

References

[1] Schroeppel, R., Orman, H., O'Malley, S., Spatscheck, O., “Fast Key Exchange with Elliptic Curve

Systems,” Advances in Cryptology—CRYPTO'95, LNCS Vol. 963, Springer-Verlag, 1995.

[2] Daemen, J., Clapp, C., “Fast Hashing and Stream Encryption with PANAMA,” Fast Software

Encryption, 5th International Workshop, FSE'98 Proceedings, LNCS Vol. 1372, Springer-Verlag, 1998.

