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1 Overview

1.1 Purpose

These specifications describe the design principle, design criteria, and encryption
algorithm of CIPHERUNICORN-E, a 64-bit block cipher.

1.2 Symbol definitions
These specifications make use of the following notation.

P :1 block of plaintext
C :1 block of ciphertext
Fi : F function of round i (i=0,1,...,15)
L : L function of round i (i=0,1,...,8)
FKIj] . j-th 32-bit extended key for main stream of F (j=0,1)
SKIj] . j-th 32-bit extended key for temporary key generation mechanism of Fi
(=0.1)
LKI{j] . j-th 32-bit extended key for L} (j=0,1)
FKii} : Group of two extended keys for main stream of Fi} (function keys)
SKii} : Group of two extended keys for temporary key generation mechanism of
Fi} (seed keys)
wkO : 4-bit temporary key
wk1,wk?2 : 8-bit temporary keys
sh[i][j] - Row-i/column-j element of T function’s input-number table
I : Data concatenation
O : Logical product
O : Exclusive OR (XOR)
H : Addition (mod 232)
X<<n : Left logical shift of x by n bits
X>>n : Right logical shift of x by n bits



1.3 Bit/byte/word ordering

These specifications use big endian notation.

Q: 128-bit data (quad word)
D: 64-bit data (double word)
W: 32-bit data (word)
B: 8-bit data (byte)
E: 1-bit data (bit)
Given the above, the following holds.

Q =Dol Ds
=Wo | Wi [ w2 [ ws
=BolB1lBz2l..| Bis
=B lE1l E2|...| Exr
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2 Design Principle and Criteria

Two methods that have been found to be effective in mounting attacks on block ciphers
of any structure are linear cryptanalysis and differential cryptanalysis. These methods
use shuffling bias in the data randomizer function to infer information on a key.
Shuffling bias often originates in the base shuffling process. A structure in which
shuffling bias cannot be detected in the base process is therefore desirable.

Against the above background, we decided to design CIPHERUNICORN-E so that
shuffling bias does not appear in the round function, the base process of data shuffling.
This was evaluated by statistically investigating the relationship between input and
output.

In addition, to perform a uniform evaluation of encryption algorithms in the design
process, we established a common evaluation scale in examining input and output with
the encryption algorithm treated as a black box. We specified, in particular, the following
items as constituting a state with no bias and sufficient shuffling, and we checked for this
state using a statistical technique that we adopted for this purpose.

* A highly probable relationship between input and output bits does not exist.

« A highly probable relationship between output bits does not exist.

* A highly probable relationship between a change in input bits and a change in

output bits does not exist.

« A highly probable relationship between a change in key bits and change in output

bits does not exist.

* Anoutput bit that has a high probability of being 0 or 1 does not exist.

Block size is 64 bits, the same as that of the Data Encryption Standard (DES), while
secret key length is 128 bits, longer than that of DES. This cipher has been designed for
high-speed operation on a 32-bit processor.

2.1 Data randomizer

2.1.1 Feistel structure
The Feistel structure has been adopted as the base structure of this cipher because of
the following advantages.
* Encryption and decryption can be performed at about the same speed
* No limitations are set on the structure of the round function
* The Feistel structure has been thoroughly analyzed

2.1.2 Initial, final, and intermediate processing
To prevent input to the 1st round function and input to the last round function from
becoming known and making an attack easy to mount, and to defend against an attack of
unknown type, 64-bit-wide functions are added before the first round and after the last
round and to every two rounds.
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2.2 Round function

2.2.1 Dual structure
The round function adopts a dual structure that guarantees the security of one part of
the structure if the other should be cracked. It consists of a main stream section and
temporary key generation mechanism that input extended keys (function key and seed
key, respectively). A temporary key is created by the temporary key generation
mechanism and combined with the main stream.

temporary key
generation
temporary .
key mechanism
< main stream

function key

Figure 2.1 Dual structure of round function

2.2.2 Main stream
The structure of the main stream has the following properties.
« Bijective if the temporary key is fixed
« Data is sufficiently shuffled in the main stream itself.

2.2.3 Temporary key generation mechanism
The structure of the temporary key generation mechanism has the following
properties.

e The temporary key is output uniformly throughout its possible range.

e The structure is simpler than that of the main stream (considering the possibility
of parallel processing).

e The structure differs from that of the main stream (difference in structure
guarantees security).

* Size of temporary key is made shorter than that of seed key.

« Data is sufficiently shuffled in the temporary key generation mechanism itself.
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Because the temporary key generation mechanism is simpler in structure than the
main stream, an adversary is likely to mount an attack on this mechanism first. Even if
the temporary key should become known, however, it is expected that the existence of
multiple seed-key candidates will make it difficult to infer the secret key or function key
from the seed key.

2.2.4 Operators
Considering a 32-bit processor to be the basic form of implementation for this cipher,
we have adopted operators that can be processed at high speed on this kind of platform.
We have also combined operations having different algebraic structures with the aim of
making the cipher stronger

2.2.5 Operation units
As a countermeasure to truncated differential attack, two types of operation units are
used: 8 and 32 bits.

2.3 Substitution tables
Four 8-bit input/output tables are used as a set of substitution tables. Each of these
8-bit input/output tables must satisfy the following conditions.
* Bijective
« Maximum differential probability of 2-6
¢ Maximum linear probability of 2-6
e An algebraic degree of 7
e Input/output polynomials of high degree and many terms
* Average number of diffusion bits (number of output bits changed due to change in
one input bit) equal to 4.0
* No fixed points

The method adopted here to generate a substitution table that satisfies the above
conditions is to use an inverse function over a Galois field (GF) of 28 in combination with
an affine transformation.

An inverse function over a GF (28) is a bijective function with an algebraic degree of 7
known to have a maximum linear and differential probability of 26 (best case). The
degree of its input/output polynomials is also high at 254. By incorporating an affine
transformation, the number of terms in the input /output polynomials can be expected to
increase.

In order to use a combination of four 8-bit input/output tables, moreover, a different
irreducible polynomial was adopted for each table.

The following equation is used to generate a substitution table.

S(X) = matrixA{ (x +c)tmod g} +d

Here:
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matrixA : GF(2) 8x8 bijective matrix
cd : 8-bit constants (other than 0)
g : 8th-degree irreducible polynomial

After selecting matrixA, ¢, d, and g by random numbers, a search is made for a
substitution table that satisfies the above conditions.

2.4 Key scheduler
The structure of the key scheduler has the following properties.
* Mapping from the secret key to extended keys is injective.
* Each of the extended keys is affected by all information in the secret key.
A highly probable relationship between the secret keys and extended keys or
among the extended keys does not exist (secure against related-key attacks).
*  The structure makes use of the constituent elements of the round function.
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3 Encryption algorithm

3.1 Total structure
The CIPHERUNICORN-E has a Feistel structure that can use a data block length of
64 bits and a secret key length of 128 bits.
There are 16 rounds with 64-bit-wide processing (L function) performed at every two
round functions (round function means F function).
The key scheduler has a Feistel structure for inputting the secret key. Here, after
shuffling in dummy loops, extended keys are repeatedly extracted while shuffling.

Plain Text
1block Secret Key 128hits
Extended i
Key
Data Randomizer ¢ 2624 bits Key Scheduler
(Encryption)

v

Cipher Text
Figure 3.1 Encryption
Cipher Text
1block Secret Key 128bits
Extended
Key
Data Randomizer < 2624bits Key Scheduler
(Decryption)

Plain Text

Figure 3.2 Decryption
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3.2 Data randomizer

3.2.1 Encryption

[Input] 1 block of plaintext: P =Po | P1 (64 bits)
Extended keys for main stream of F function: FKfi =FK [0] | FK [1] (64
bits: i=0,1,...,15)
Extended keys for temporary key generation mechanism of F function:
SK{i} =SK@[0] | SKi[1] (64 bits: i=0,1,...,15)
Extended keys for L function: LK@ =LK®[0] | LK®[1] (64 bits: j=0.1,...,8)

[Output] 1 block of ciphertext: C =Co | C1 (64 bits)

[Process] Shuffling is performed by a 16-round Feistel structure and by an L
function that performs 64-bit shuffling every two rounds.

P
|
Y ! LK
Lo
v FK(% sk
S F
v P sk
S
!>v<. LK™
s
4 FK{Z},SK{Z}
S 2
I
v FK¥ skt
S F9
I
¥ FK sk
15}
4 | LK!®
Lis
[ | ]
C

Figure 3.3 Data randomizer (encryption)
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3.2.2 Decryption

[Input] 1 block of ciphertext: C =Co | C1 (64 bits)
Extended keys for main stream of F function: FKfi} =FK{[0] | FKi[1] (64
bits: i=0,1,...,15)
Extended keys for temporary key generation mechanism of F function:
SK{i} =SK[0] | SK{[1] (64 bits: i=0,1,...,15)
Extended keys for L function: LK@ =LK®[0] | LK®[1] (64 bits: j=0.1,...,8)

[Output] 1 block of plaintext: P =Po | P1 (64bits)

[Process] Shuffling is performed by a 16-round Feistel structure and by an L
function that performs 64-bit shuffling every two rounds.

C
]
| ¥ I LK®
L{8}
>< A1 g9
() F{15}
>;< FK{M}’SK{M}
() F{14}
v LK{7}
L{7}
v FK{ 13} ,SK{ 13}
& Fo
¥ FK{2 s
() F{12}
>v< FK (% sk
S Fo
v LK{O}
L{O}
[ |
I
P

Figure 3.4 Data randomizer (decryption)
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3.3 L function
[Input] Input data: X=X | Xr (64 bits)

Extended keys for L function: LK =LK#[0] | LK{{1] (64 bits)
[Output] Output data: Z=7y | Zr (64 bits)

[Process] The L function operates on input data and keys according to the following
equations.

Z =X OXsOLK 1) ox oK o) oLk 1))
Ze=XrO(X OLK [0) O (XrOLK 0] OLK 1))

Xy LK 0] LK [ X

N N

—>D
g D
Z Zr

Figure 3.5 L function

10
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3.4 F function

[Input]

[Output]
[Process]

Input data: X (32 bits)

Extended keys for main stream of Fii} function: FK& =FK®[0] | FKE[1] (64
bits)

Extended keys for temporary key generation mechanism of Fi} function:
SK(i} =SK[0] | SKi[1] (64 bits)

Output data: Z (32 bits)

An F function consists of a main stream section and a temporary key
generation mechanism. After adding in the FK®[0] key to 32-bit input data,
the process branches into these two sections. In the main stream section, the
function executes T functions in input-number order 0, 1, 2, and 3 and then
adds in the FK{}[1] key. In the following T functions, the input number is
determined by referencing the Sh table based on wk0. The K function,
moreover, is executed just before each of the last two T functions. The 32-bit
output of the main stream becomes the output of the F function. In the
temporary key generation mechanism, the function adds in the SK{}[0] key,
executes the Y function (with number of shifts being 3, 8, and 16), and
executes the T function with input number equal to 0. Then, after adding in
the SKiii[1] key, the function again executes the Y function (7,9,13) as well as
the T function with input number equal to 0 and 1. In this result, the four
most significant bits are taken to be wko, the least significant byte wk1, and
the second lower byte wk2.

11
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3.5 T function

[Input]

[Output]
[Process]

Input data: X =Xo | X1 | X2 | X3 (32 bits)
Input number: n (n=0,1,2,3)

Output data: Z (32 bits)
The function divides input data into four bytes and treats the byte
corresponding to the input number as the input value to a substitution table.
There are four 8-bit-input/8-bit-output substitution tables denoted as So, S,
S2, and Ss. The one byte corresponding to the input number uses the output
from the substitution table in question, while the other bytes are exclusive
OR’d with output from the other substitution tables, as shown below.

Z=T(n)

Here:

T(0) = Sx(Xo) | (soﬁxo)mxl) | (S:(X)OX2) | (So(Xo)OXa)
T(1) = (S(X)0Xo) [S(X0) | (S(X)OX2) | (SiX0)DXs)
T(2) = (SUX2)0Xo) | (S(X)TX1) [S:(X2) | (Se(X2)TX3)
T(3) = (S(Xa)OXo) | (SiXTX1) | (SoX3)OX2) Sy(X3)

X
X1 sz X3 X1

X3

|

Xo
v
S

Xo sz
} § }
v v v v v v v
S S S S S S S
N Lé L>| Lé L

Xo

v v

z z
T(0) T(1)
X X
X1 i Xa X3 Xo X1 i Xa X3

W

va v AN S B

S, S S S S S, S

#Lﬂ Crcd LT
v

Z Z
T(2 T(3)

Figure 3.7 T function
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3.6 K function

[Input]  Input data: X =Xo | X1 | Xz | X3 (32 bits)
Input number: n (n=0,1,2,3)

Temporary key: wk=wk1 or wk2 (8 bits)

[Output] Output data: Z (32 bits)

[Process] The function divides input data into single bytes and performs an exclusive
OR between the byte corresponding to the input number and the temporary
key.

Z=K(n,wk)

Here:

KOWK) = (XoOwk) [ Xyl X50 X5
K(Lwk) = Xol (Xa0wk) X[ X5

K@wk) = Xol X1l (XaOwk) [ X3
K@wk) = Xol X1l Xzl (XsOwk)

14
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3.7 Substitution tables
[Input]  Input data: X (8 bits)
[Output] Output data: Z (8 bits)
[Process] Data in substitution table Sn at position corresponding to input data is
output.

Z = Sn(X) n=0,1,2,3
The equation for generating each of the four substitution tables is as follows.
Sn (X) = matrixA{ (x + c)* mod g} + d

Table 3.1 Substitution table parameters

Sn matrixA c g d

So {0x23, Ox4e, 0x9c, Oxb1, 0x49, Oxd8, 0xc6, Oxe4} | 233 | Ox1lld 28
S1 {Ox7e, Ox2a, Oxef, 0x52, 0x34, Oxa2, 0x70, Oxd7} | 26 0x165 | 171
S {0x32, 0x04, 0x8f, 0x83, 0x89, 0x67, Oxcf, Ox3b} 43 Ox14d | 155
S3 {0x34, 0x20, Oxba, 0xd0, 0x66, Oxd7, Oxb2, Oxa8} | 200 | Ox171 47

Here, matrixA = {0x23, Ox4e, 0x9c, Oxbl, 0x49, 0xd8, Oxc6, Oxed}of So indicates the
GF(2) 8x8 matrix shown below.

~
/

matri xA =

b
P PP OPFPPEFR OO
P rRrRrRFROOPRrRrO
R OO0OOkFR OOoFPR
oOoor ok kL oo
OO rRrOpRrpro
PP OOORrPro
Or oo 9Ootrr
OoO0OoOoOr kR oor

-

Note that irreducible polynomial g = Ox11d = 100011101 of So is the following
polynomial.
g:X8+X4+X3+X2+1

15
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Table 3.2 Substitution table So

So(0)=149, So(1)=111, ............ , So(255)=92

149 111 237 155 21 85108 76 236 75193 84 22138 89 5
51 145 13 153 148 163 86 59 204 175 91 117 126 70 144 10
248 146 201 0 97 208 23 214 147 234 66 65 226 57 210 224
172 40 154 87 178 235 135 220 110 121 96 8 9 53 241 105
143 169 182 139 112 16 183 67 233 39 197 74 166 218 231 242
161 159 192 37 177 228 47 119 14 18 244 56 3 195 239 219
33 167 26 180 54 61 58 222 4 30 191 34 107 249 142 150
95 42 124 25232181120 93 5 68 6 48 129 41 104 73
188 165 212 160 250 141 123 216 94 238 81 202 7 122 196 17
207 102 184 189 243 72 206 12 200 225 164 176 247 1 2 254
71 185 229 187 251 137 69 168 50 24 171 173 158 221 127 27
252 114 152 82 209 38 203 128 215 213 36 174 134 179 90 118
80 246 253 125 29 44 15 227 98 205 255 77 198 194 133 130
79 103 78 49 19 140 109 211 223 63 64 151 62 217 170 83
136 45 115 199 20 46 190 240 132 28 162 230 131 106 32 88
157 31 43 156 113 186 35101 52 60 11 100 116 245 99 92

Table 3.3 Substitution table S

S,(0)=174, S,(1)=255, ............ , S,(255)=53

174 255 161 109 254 40 95 67 33 124 133 58 224 238 129 56
137 57 169 87 221 220 163 84 14 239 171 138 74 192 66 104
8 250 43 115 126 88 212 103 62 82 143 4 117 226 28 155
65 156 139 183 235 125 217 116 111 237 157 68 160 184 213 172
170 132 73 2 1232 92249 136 106 175 5 9 140 38 191
50 251 85 12 27 48 46 52 145 78 168 159 100 188 16 227
26 198 244 205 178 72 142 162 51 246 241 128 194 177 122 20
144 49 83 166 247 225 11 7 102 242 185 18 150 165 121 98
93 197 70 151 75 118 202 216 108 207 15 112 99 35 101 69
86 61 79110 13218 149 6134 29 36 131 181 154 180 230
77 193 164 17 211 3 209 105 94 206 44 19 60 123 10 31
130 195 76 208 54 252 219 203 199 39 189 80 167 90 32 30
233 64 245 182 120 231 127 47 22 135 55114 234 41 21 81
173 223 23 253 153 25 45 248 97 179 186 119 200 146 187 210
0 228 24 190 141 236 63 201 96 113 240 147 229 91 107 214
89 59 152 215 176 204 243 148 42 158 71 34 222 37 196 53

16



S2(0)=37, S(1)=34,

37
212
120
227
157

90

75
243

43
136
158

99
238
215
226
113

Ss(0)=24, Ss(1)=252,

34 162
97 70
123 83
219 23
53 196
119 93
46 8
115 137
201 121
65 114
151 24
25 80
206 42
27 126
110 78
140 138

24 252 144
112 229 185
192 107 194

98 174 103

85
79

69 251
52 56

247 211 33
1 182 180

50

30 91

242 217 208
141 190 243

143
71

48 110

90 255

150 205 184
151 116 122

213

53 148

132
15
100
95
89
207
172
147
180
31
50
224
125

186
39

121
189
220
156
36
95
28
199
161
38
214
80
19
201
232
15

Table 3.4 Substitution table S>

134
58
235
111
81
38
170
159
86
40
176
33
239
251
240
185

220
72
3
11
4
131
152
233
205
49
108
200
237
51
141
228

, Sx(255)=124

91
216
230

87

84

94
231

59
225

0

67
197

52
241
166
106

143
208
160
104
16
60
210
221
242
36
127
118
223
129
69
47

41

14
193
163
192
116

66
253
182
169
150
161

88
135
107
252

45
96
245
203
74

54
112
55
22
18
61
167
246
85
199

229
214
164
189

13
213

10
165

63
249

142

26
244
103
188

247
217
155

29
181
122
187
198
232

35
168

77
130
146
149

92

Table 3.5 Substitution table Sz

17
76
16
157
233
241
67
207
89
163
109
176
254
139
166
55

42
204
68
59
238
187
10
126
12
45
162
78
114
75
117
239

77
209
183
145
222

44
147
216
195

39

60
234

25

54

14

3

127
87
171
155
149
167
225
224
74
4
165
181
230
22
94
191

, S5(255)=34

2

5
219
158
37
124
215
61
235
62
198
97
a7
63
111
134

17

35
96
51
8
248
102
210
81
223
136
228
84
43
244
206
250

173
82
92

231
26

227

246

202

226

104

221
20

100

108

237

193

21
99
13
132
18
115
160
196
172
179
164
70
178
175
177

98
133
255
156

20

128
105
254

62
194
190

76

32
250
218

129
133
152
83
125
212
131
146
245
88
106
29
40
46
200
130

178
179
175
173
184
101
204
222

a4

17
171
209
191
177
109

30

58
140
86
49
11
142
73
188

197
101
168

41
169

31
118

68
28
79
211
57
144
12
234

174
195
48

73
202
236

105
66
135
23
137
154
65
119
218

203

27
249
240
170
138

56
154
148

64
183
117
102
153

21
248
145
139

71

82

19
124

113
64
123
32
253
93
57
128
159

236
72
186
153
120
34
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3.8 Sh table
[Input] Input data: wkO (4 bits)
Column number: i (i=0,1,2,3)
[Output] Output data: n (n=0,1,2,3)
[Process] Data at row wk0 and column i of the Sh table is output to give T-function
input number.

n=Shwko][i]  wk0=0,1,...,15 i=0,1,2,3

The Sh table must meet the following conditions.

(1) Elements of row vector (Sh[wk0][0],Sh[wkO0][1],Sh[wk0][2],Sh[wkO][3])
must be a permutation of 0, 1, 2, and 3.

(2) Row vector (Sh[wk0][0],Sh[wkO0][1],Sh[wk0][2],Sh[wkO0][3]) must not be a
rotation of vector (0,1,2,3).

(3) Elements n in column vector (Sh[O][i],Sh[1][i],...,Sh[15][i]) must appear
with equal probability.
For 16 (Sh]wkO0][0],Sh[wkO0][1],Sh[wk0][2],Sh[wkO][3]) row vectors that satisfy
conditions (1)(2)(3), row number is determined so that, when given a Hamming
weight differential of 1 in wkO, the probability of a differential appearing in
Sh[wkO][i] is 1/2 if possible. Taking, for example, rows 1 and 2 with elements
(0,2,1,3) and (0,2,3,1) for which wkoO differential is 0001¢), we can examine the
differential in each column and see that there is no differential in columns 0
and 1 while there is one in columns 2 and 3.

Table 3.6 Sh table

(0213 )
0231
03 1 2
032 1
103 2
120 3
130 2
310 2
Sh= 3210
201 3
203 1
302 1
1320
210 3
2130
&3120/
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3.9 Y function

[Input] Input data: X (32 bits)

[Constants] 2 sets of 3 constants: Const[i][j] (i=0,1 j=0,1,2)

[Output] Output data: Z (32 bits)

[Process] The function shifts input data by an amount specified by a subset of
constants, and adds the result of this shift to original input data. This
process is repeated two more times using the result of the previous
process as input data.

WO0=X+(X<<Const[i][0])

W1=WO0+(WO0<<Const[i][1])

Z=W1+(W1l<<Const[i][2])
Here:  (Const[0][0],Const[0][1],Const[0][2])=(3,8,16)

(Const[1][0],Const[1][1],Const[1][2])=(7,9,13)
The two sets of three constants are selected according to the following conditions
(priority).
(1) Selection of Const[1]

Directly after adding in key SKIii}1l] in the temporary key generation
mechanism of the F function:

(A) Constants shall be arranged in ascending order, and their values shall
be such that
(B) when given a Hamming weight differential of 1, the probability that a
differential appears in each of the 8 bits input to the T function
immediately after Y function (Const[1]) is 1/2 if possible;
(C) when given a Hamming weight differential of 2, the probability that a
differential appears in each of the 8 bits input to the T function
immediately after Y function (Const[1]) is 1/2 if possible;
(D) when given a Hamming weight differential of 3, the probability that a
differential appears in each of the 16 bits input to the two T functions
immediately after Y function (Const[1]) is 1/2 if possible; and
(E) when given a Hamming weight differential of 4, the probability that a
differential appears in each of the 16 bits input to the two T functions
immediately after Y function (Const[1]) is 1/2 if possible.

(2) Selection of Const[0]
Here, we use Const[1] left over from (1) above and SKI{}0]=0 as the key. Thus,

after adding in key SKI}0] in the temporary key generation mechanism of the F
function:

(A) Constants shall be arranged in ascending order, and their values shall
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be such that

(B) when given a Hamming weight differential of 1, the probability that a
differential appears in each of the 8 bits input to the T function
immediately after Y function (Const[0]) is 1/2 if possible;

(C) when given a Hamming weight differential of 1, the probability that a
differential appears in each of the output bits of the temporary key
generation mechanism is 1/2 if possible;

(D) when given a Hamming weight differential of 2, the probability that a
differential appears in each of the output bits of the temporary key
generation mechanism is 1/2 if possible;

(E) when given a Hamming weight differential of 3, the probability that a
differential appears in each of the output bits of the temporary key
generation mechanism is 1/2 if possible; and

(F) treating addition within the Y function as an exclusive OR, as many
input bits to the temporary key generation mechanism as possible shall
appear in any of the mechanism’s output bits.
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3.10 Key scheduler

[Input]
[Output]

[Process]

Secret Key (128 bits)

Extended keys for main stream of F function: FKIi (i=0,1,...,15) (64 bits x 16
rounds)

Extended keys for temporary key generation mechanism of F function: SK {i}
(i=0,1,...,15) (64 bits x16 rounds)

Extended keys for L function: LK { (j=0,1,...,8) (128 bits x 9 rounds)

The key scheduler consists of multiple ST functions (Figure 3.9).
After looping the secret key through the ST function four times, the key
scheduler passes the above result through 32 rounds of the ST function to
generate extended keys.

The order of key generation is shown in Figure 3.8, Figure 3.10, and Figure
3.11. During this process, FK®-9[1] is extracted so that the key scheduler
takes on the form of injective mapping.
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Secret Key 128hits
i=0~3 ST())
ST(0) > KO
I
ST|(1) —> SKi® gKl®
ST|(2) —> FKI9, P
ST(3) —> LB
I
ST|(O) —> K@ oK@
ST(1) —>
I FK? K
|
ST(1) —> L3
( I \
ST(2)
I
See
ST(3) 16} 6} el e
Fig.3.11 ¢ | > SK{4},FK SK',FK
for details ST(0) LK
T SK{B},FK{g},SK{g},FK{g}
ST(1
L I() )
l
|
516 B
I
ST(3) —» LK!®

Figure 3.8 Key scheduler
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3.11 ST function
[Input]  Input data: X =Xo | X1 | X2 | Xs (128 bits)
Input number: n (n=0,1,2,3)
[Output] Output data: Z =Zo | Z1 | 2 | Z5 (128 bits)
[Process] The ST function has a nested Feistel structure using T functions. The input
number to the T functions is assumed to be in modulo 4.

Xo X1 X2 X3
Ded>—y g
T(n+1) \*‘
#‘ T(n)
SPA amEs : 3
I H——»D
T(n+2) \*‘
T(n+3)
N r*\ | >€9
(|
v ; v Vv
Zy Z Z, Z3

Figure 3.9 ST function
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X1 X2 X3
Ded>— ot
T(n+1) ! P skiity
{i+1 < ' T(n)
SKYH1] |¥\
D+ ' a
| @ oD
T(n+2) . P skiHo]
SK{i}[O] < ¢ T(n+3)
A [T I
I "5 v
Zy Zy

Z; Zg
SKii}l, SKii+1} extraction (FK extraction is similar)

X]_ X2 X3
De>— H—
T(n+1) \*‘
Lo I*‘ ()
(D1 ' %
! @ r>@
T(n+2) | P kit
T(n+3)
N ﬁ T
v ; v

Z Z ) . Z Z
o “' LK} extraction 2 3

Figure 3.10 Extended key extraction (1)
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Xo ﬁ1 X2 X3
1]
7 I 'y SK¥1]
T | >
sk1] < ' T
694 I*\ I A
0
6] T |
ski¥ o] < I*‘ - sKI[0]
[ ; \*I > FK®[0]
FK7[0] < I*‘ T
M m—
r; - > LK
.
FK® 1] ot — FK® 1]
FK[1] t_ﬁ m _t FK®[1]
SPA >
]t
LK1] ¢ I% .
D — e
I
o T Lkl P SK9[1]
sk'[1] « 3 T
A 1] ’EB
[
D ) T
T lel p SK[0]
ski%0] < I_*j .
A
yam @ 1>
{9}
FKO[0] l |T P FK[0]
>—H —>D
v : \ A /
Zy Z Z; Zg

1
SKi6-9}, FK{&-9, LK #} extraction

Figure 3.11 Extended key extraction (2)
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